Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  efopnlem2 Structured version   Visualization version   GIF version

Theorem efopnlem2 24448
 Description: Lemma for efopn 24449. (Contributed by Mario Carneiro, 2-May-2015.)
Hypothesis
Ref Expression
efopn.j 𝐽 = (TopOpen‘ℂfld)
Assertion
Ref Expression
efopnlem2 ((𝑅 ∈ ℝ+𝑅 < π) → (exp “ (0(ball‘(abs ∘ − ))𝑅)) ∈ 𝐽)

Proof of Theorem efopnlem2
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 logf1o 24356 . . . . . . . 8 log:(ℂ ∖ {0})–1-1-onto→ran log
2 f1orn 6185 . . . . . . . . 9 (log:(ℂ ∖ {0})–1-1-onto→ran log ↔ (log Fn (ℂ ∖ {0}) ∧ Fun log))
32simprbi 479 . . . . . . . 8 (log:(ℂ ∖ {0})–1-1-onto→ran log → Fun log)
4 funcnvres 6005 . . . . . . . 8 (Fun log → (log ↾ (ℂ ∖ (-∞(,]0))) = (log ↾ (log “ (ℂ ∖ (-∞(,]0)))))
51, 3, 4mp2b 10 . . . . . . 7 (log ↾ (ℂ ∖ (-∞(,]0))) = (log ↾ (log “ (ℂ ∖ (-∞(,]0))))
6 df-log 24348 . . . . . . . . . 10 log = (exp ↾ (ℑ “ (-π(,]π)))
76cnveqi 5329 . . . . . . . . 9 log = (exp ↾ (ℑ “ (-π(,]π)))
8 relres 5461 . . . . . . . . . 10 Rel (exp ↾ (ℑ “ (-π(,]π)))
9 dfrel2 5618 . . . . . . . . . 10 (Rel (exp ↾ (ℑ “ (-π(,]π))) ↔ (exp ↾ (ℑ “ (-π(,]π))) = (exp ↾ (ℑ “ (-π(,]π))))
108, 9mpbi 220 . . . . . . . . 9 (exp ↾ (ℑ “ (-π(,]π))) = (exp ↾ (ℑ “ (-π(,]π)))
117, 10eqtri 2673 . . . . . . . 8 log = (exp ↾ (ℑ “ (-π(,]π)))
1211reseq1i 5424 . . . . . . 7 (log ↾ (log “ (ℂ ∖ (-∞(,]0)))) = ((exp ↾ (ℑ “ (-π(,]π))) ↾ (log “ (ℂ ∖ (-∞(,]0))))
13 imassrn 5512 . . . . . . . . 9 (log “ (ℂ ∖ (-∞(,]0))) ⊆ ran log
14 logrn 24350 . . . . . . . . 9 ran log = (ℑ “ (-π(,]π))
1513, 14sseqtri 3670 . . . . . . . 8 (log “ (ℂ ∖ (-∞(,]0))) ⊆ (ℑ “ (-π(,]π))
16 resabs1 5462 . . . . . . . 8 ((log “ (ℂ ∖ (-∞(,]0))) ⊆ (ℑ “ (-π(,]π)) → ((exp ↾ (ℑ “ (-π(,]π))) ↾ (log “ (ℂ ∖ (-∞(,]0)))) = (exp ↾ (log “ (ℂ ∖ (-∞(,]0)))))
1715, 16ax-mp 5 . . . . . . 7 ((exp ↾ (ℑ “ (-π(,]π))) ↾ (log “ (ℂ ∖ (-∞(,]0)))) = (exp ↾ (log “ (ℂ ∖ (-∞(,]0))))
185, 12, 173eqtri 2677 . . . . . 6 (log ↾ (ℂ ∖ (-∞(,]0))) = (exp ↾ (log “ (ℂ ∖ (-∞(,]0))))
1918imaeq1i 5498 . . . . 5 ((log ↾ (ℂ ∖ (-∞(,]0))) “ (0(ball‘(abs ∘ − ))𝑅)) = ((exp ↾ (log “ (ℂ ∖ (-∞(,]0)))) “ (0(ball‘(abs ∘ − ))𝑅))
20 cnxmet 22623 . . . . . . . . . . . . 13 (abs ∘ − ) ∈ (∞Met‘ℂ)
2120a1i 11 . . . . . . . . . . . 12 ((𝑅 ∈ ℝ+𝑅 < π) → (abs ∘ − ) ∈ (∞Met‘ℂ))
22 0cnd 10071 . . . . . . . . . . . 12 ((𝑅 ∈ ℝ+𝑅 < π) → 0 ∈ ℂ)
23 rpxr 11878 . . . . . . . . . . . . 13 (𝑅 ∈ ℝ+𝑅 ∈ ℝ*)
2423adantr 480 . . . . . . . . . . . 12 ((𝑅 ∈ ℝ+𝑅 < π) → 𝑅 ∈ ℝ*)
25 blssm 22270 . . . . . . . . . . . 12 (((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ 0 ∈ ℂ ∧ 𝑅 ∈ ℝ*) → (0(ball‘(abs ∘ − ))𝑅) ⊆ ℂ)
2621, 22, 24, 25syl3anc 1366 . . . . . . . . . . 11 ((𝑅 ∈ ℝ+𝑅 < π) → (0(ball‘(abs ∘ − ))𝑅) ⊆ ℂ)
2726sselda 3636 . . . . . . . . . 10 (((𝑅 ∈ ℝ+𝑅 < π) ∧ 𝑥 ∈ (0(ball‘(abs ∘ − ))𝑅)) → 𝑥 ∈ ℂ)
2827imcld 13979 . . . . . . . . . . 11 (((𝑅 ∈ ℝ+𝑅 < π) ∧ 𝑥 ∈ (0(ball‘(abs ∘ − ))𝑅)) → (ℑ‘𝑥) ∈ ℝ)
29 efopnlem1 24447 . . . . . . . . . . . . 13 (((𝑅 ∈ ℝ+𝑅 < π) ∧ 𝑥 ∈ (0(ball‘(abs ∘ − ))𝑅)) → (abs‘(ℑ‘𝑥)) < π)
30 pire 24255 . . . . . . . . . . . . . 14 π ∈ ℝ
31 abslt 14098 . . . . . . . . . . . . . 14 (((ℑ‘𝑥) ∈ ℝ ∧ π ∈ ℝ) → ((abs‘(ℑ‘𝑥)) < π ↔ (-π < (ℑ‘𝑥) ∧ (ℑ‘𝑥) < π)))
3228, 30, 31sylancl 695 . . . . . . . . . . . . 13 (((𝑅 ∈ ℝ+𝑅 < π) ∧ 𝑥 ∈ (0(ball‘(abs ∘ − ))𝑅)) → ((abs‘(ℑ‘𝑥)) < π ↔ (-π < (ℑ‘𝑥) ∧ (ℑ‘𝑥) < π)))
3329, 32mpbid 222 . . . . . . . . . . . 12 (((𝑅 ∈ ℝ+𝑅 < π) ∧ 𝑥 ∈ (0(ball‘(abs ∘ − ))𝑅)) → (-π < (ℑ‘𝑥) ∧ (ℑ‘𝑥) < π))
3433simpld 474 . . . . . . . . . . 11 (((𝑅 ∈ ℝ+𝑅 < π) ∧ 𝑥 ∈ (0(ball‘(abs ∘ − ))𝑅)) → -π < (ℑ‘𝑥))
3533simprd 478 . . . . . . . . . . 11 (((𝑅 ∈ ℝ+𝑅 < π) ∧ 𝑥 ∈ (0(ball‘(abs ∘ − ))𝑅)) → (ℑ‘𝑥) < π)
3630renegcli 10380 . . . . . . . . . . . . 13 -π ∈ ℝ
3736rexri 10135 . . . . . . . . . . . 12 -π ∈ ℝ*
3830rexri 10135 . . . . . . . . . . . 12 π ∈ ℝ*
39 elioo2 12254 . . . . . . . . . . . 12 ((-π ∈ ℝ* ∧ π ∈ ℝ*) → ((ℑ‘𝑥) ∈ (-π(,)π) ↔ ((ℑ‘𝑥) ∈ ℝ ∧ -π < (ℑ‘𝑥) ∧ (ℑ‘𝑥) < π)))
4037, 38, 39mp2an 708 . . . . . . . . . . 11 ((ℑ‘𝑥) ∈ (-π(,)π) ↔ ((ℑ‘𝑥) ∈ ℝ ∧ -π < (ℑ‘𝑥) ∧ (ℑ‘𝑥) < π))
4128, 34, 35, 40syl3anbrc 1265 . . . . . . . . . 10 (((𝑅 ∈ ℝ+𝑅 < π) ∧ 𝑥 ∈ (0(ball‘(abs ∘ − ))𝑅)) → (ℑ‘𝑥) ∈ (-π(,)π))
42 imf 13897 . . . . . . . . . . 11 ℑ:ℂ⟶ℝ
43 ffn 6083 . . . . . . . . . . 11 (ℑ:ℂ⟶ℝ → ℑ Fn ℂ)
44 elpreima 6377 . . . . . . . . . . 11 (ℑ Fn ℂ → (𝑥 ∈ (ℑ “ (-π(,)π)) ↔ (𝑥 ∈ ℂ ∧ (ℑ‘𝑥) ∈ (-π(,)π))))
4542, 43, 44mp2b 10 . . . . . . . . . 10 (𝑥 ∈ (ℑ “ (-π(,)π)) ↔ (𝑥 ∈ ℂ ∧ (ℑ‘𝑥) ∈ (-π(,)π)))
4627, 41, 45sylanbrc 699 . . . . . . . . 9 (((𝑅 ∈ ℝ+𝑅 < π) ∧ 𝑥 ∈ (0(ball‘(abs ∘ − ))𝑅)) → 𝑥 ∈ (ℑ “ (-π(,)π)))
4746ex 449 . . . . . . . 8 ((𝑅 ∈ ℝ+𝑅 < π) → (𝑥 ∈ (0(ball‘(abs ∘ − ))𝑅) → 𝑥 ∈ (ℑ “ (-π(,)π))))
4847ssrdv 3642 . . . . . . 7 ((𝑅 ∈ ℝ+𝑅 < π) → (0(ball‘(abs ∘ − ))𝑅) ⊆ (ℑ “ (-π(,)π)))
49 df-ima 5156 . . . . . . . 8 (log “ (ℂ ∖ (-∞(,]0))) = ran (log ↾ (ℂ ∖ (-∞(,]0)))
50 eqid 2651 . . . . . . . . . 10 (ℂ ∖ (-∞(,]0)) = (ℂ ∖ (-∞(,]0))
5150logf1o2 24441 . . . . . . . . 9 (log ↾ (ℂ ∖ (-∞(,]0))):(ℂ ∖ (-∞(,]0))–1-1-onto→(ℑ “ (-π(,)π))
52 f1ofo 6182 . . . . . . . . 9 ((log ↾ (ℂ ∖ (-∞(,]0))):(ℂ ∖ (-∞(,]0))–1-1-onto→(ℑ “ (-π(,)π)) → (log ↾ (ℂ ∖ (-∞(,]0))):(ℂ ∖ (-∞(,]0))–onto→(ℑ “ (-π(,)π)))
53 forn 6156 . . . . . . . . 9 ((log ↾ (ℂ ∖ (-∞(,]0))):(ℂ ∖ (-∞(,]0))–onto→(ℑ “ (-π(,)π)) → ran (log ↾ (ℂ ∖ (-∞(,]0))) = (ℑ “ (-π(,)π)))
5451, 52, 53mp2b 10 . . . . . . . 8 ran (log ↾ (ℂ ∖ (-∞(,]0))) = (ℑ “ (-π(,)π))
5549, 54eqtri 2673 . . . . . . 7 (log “ (ℂ ∖ (-∞(,]0))) = (ℑ “ (-π(,)π))
5648, 55syl6sseqr 3685 . . . . . 6 ((𝑅 ∈ ℝ+𝑅 < π) → (0(ball‘(abs ∘ − ))𝑅) ⊆ (log “ (ℂ ∖ (-∞(,]0))))
57 resima2 5467 . . . . . 6 ((0(ball‘(abs ∘ − ))𝑅) ⊆ (log “ (ℂ ∖ (-∞(,]0))) → ((exp ↾ (log “ (ℂ ∖ (-∞(,]0)))) “ (0(ball‘(abs ∘ − ))𝑅)) = (exp “ (0(ball‘(abs ∘ − ))𝑅)))
5856, 57syl 17 . . . . 5 ((𝑅 ∈ ℝ+𝑅 < π) → ((exp ↾ (log “ (ℂ ∖ (-∞(,]0)))) “ (0(ball‘(abs ∘ − ))𝑅)) = (exp “ (0(ball‘(abs ∘ − ))𝑅)))
5919, 58syl5eq 2697 . . . 4 ((𝑅 ∈ ℝ+𝑅 < π) → ((log ↾ (ℂ ∖ (-∞(,]0))) “ (0(ball‘(abs ∘ − ))𝑅)) = (exp “ (0(ball‘(abs ∘ − ))𝑅)))
6050logcn 24438 . . . . . 6 (log ↾ (ℂ ∖ (-∞(,]0))) ∈ ((ℂ ∖ (-∞(,]0))–cn→ℂ)
61 difss 3770 . . . . . . 7 (ℂ ∖ (-∞(,]0)) ⊆ ℂ
62 ssid 3657 . . . . . . 7 ℂ ⊆ ℂ
63 efopn.j . . . . . . . 8 𝐽 = (TopOpen‘ℂfld)
64 eqid 2651 . . . . . . . 8 (𝐽t (ℂ ∖ (-∞(,]0))) = (𝐽t (ℂ ∖ (-∞(,]0)))
6563cnfldtop 22634 . . . . . . . . . 10 𝐽 ∈ Top
6663cnfldtopon 22633 . . . . . . . . . . . 12 𝐽 ∈ (TopOn‘ℂ)
6766toponunii 20769 . . . . . . . . . . 11 ℂ = 𝐽
6867restid 16141 . . . . . . . . . 10 (𝐽 ∈ Top → (𝐽t ℂ) = 𝐽)
6965, 68ax-mp 5 . . . . . . . . 9 (𝐽t ℂ) = 𝐽
7069eqcomi 2660 . . . . . . . 8 𝐽 = (𝐽t ℂ)
7163, 64, 70cncfcn 22759 . . . . . . 7 (((ℂ ∖ (-∞(,]0)) ⊆ ℂ ∧ ℂ ⊆ ℂ) → ((ℂ ∖ (-∞(,]0))–cn→ℂ) = ((𝐽t (ℂ ∖ (-∞(,]0))) Cn 𝐽))
7261, 62, 71mp2an 708 . . . . . 6 ((ℂ ∖ (-∞(,]0))–cn→ℂ) = ((𝐽t (ℂ ∖ (-∞(,]0))) Cn 𝐽)
7360, 72eleqtri 2728 . . . . 5 (log ↾ (ℂ ∖ (-∞(,]0))) ∈ ((𝐽t (ℂ ∖ (-∞(,]0))) Cn 𝐽)
7463cnfldtopn 22632 . . . . . . 7 𝐽 = (MetOpen‘(abs ∘ − ))
7574blopn 22352 . . . . . 6 (((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ 0 ∈ ℂ ∧ 𝑅 ∈ ℝ*) → (0(ball‘(abs ∘ − ))𝑅) ∈ 𝐽)
7621, 22, 24, 75syl3anc 1366 . . . . 5 ((𝑅 ∈ ℝ+𝑅 < π) → (0(ball‘(abs ∘ − ))𝑅) ∈ 𝐽)
77 cnima 21117 . . . . 5 (((log ↾ (ℂ ∖ (-∞(,]0))) ∈ ((𝐽t (ℂ ∖ (-∞(,]0))) Cn 𝐽) ∧ (0(ball‘(abs ∘ − ))𝑅) ∈ 𝐽) → ((log ↾ (ℂ ∖ (-∞(,]0))) “ (0(ball‘(abs ∘ − ))𝑅)) ∈ (𝐽t (ℂ ∖ (-∞(,]0))))
7873, 76, 77sylancr 696 . . . 4 ((𝑅 ∈ ℝ+𝑅 < π) → ((log ↾ (ℂ ∖ (-∞(,]0))) “ (0(ball‘(abs ∘ − ))𝑅)) ∈ (𝐽t (ℂ ∖ (-∞(,]0))))
7959, 78eqeltrrd 2731 . . 3 ((𝑅 ∈ ℝ+𝑅 < π) → (exp “ (0(ball‘(abs ∘ − ))𝑅)) ∈ (𝐽t (ℂ ∖ (-∞(,]0))))
8050logdmopn 24440 . . . . 5 (ℂ ∖ (-∞(,]0)) ∈ (TopOpen‘ℂfld)
8180, 63eleqtrri 2729 . . . 4 (ℂ ∖ (-∞(,]0)) ∈ 𝐽
82 restopn2 21029 . . . 4 ((𝐽 ∈ Top ∧ (ℂ ∖ (-∞(,]0)) ∈ 𝐽) → ((exp “ (0(ball‘(abs ∘ − ))𝑅)) ∈ (𝐽t (ℂ ∖ (-∞(,]0))) ↔ ((exp “ (0(ball‘(abs ∘ − ))𝑅)) ∈ 𝐽 ∧ (exp “ (0(ball‘(abs ∘ − ))𝑅)) ⊆ (ℂ ∖ (-∞(,]0)))))
8365, 81, 82mp2an 708 . . 3 ((exp “ (0(ball‘(abs ∘ − ))𝑅)) ∈ (𝐽t (ℂ ∖ (-∞(,]0))) ↔ ((exp “ (0(ball‘(abs ∘ − ))𝑅)) ∈ 𝐽 ∧ (exp “ (0(ball‘(abs ∘ − ))𝑅)) ⊆ (ℂ ∖ (-∞(,]0))))
8479, 83sylib 208 . 2 ((𝑅 ∈ ℝ+𝑅 < π) → ((exp “ (0(ball‘(abs ∘ − ))𝑅)) ∈ 𝐽 ∧ (exp “ (0(ball‘(abs ∘ − ))𝑅)) ⊆ (ℂ ∖ (-∞(,]0))))
8584simpld 474 1 ((𝑅 ∈ ℝ+𝑅 < π) → (exp “ (0(ball‘(abs ∘ − ))𝑅)) ∈ 𝐽)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 196   ∧ wa 383   ∧ w3a 1054   = wceq 1523   ∈ wcel 2030   ∖ cdif 3604   ⊆ wss 3607  {csn 4210   class class class wbr 4685  ◡ccnv 5142  ran crn 5144   ↾ cres 5145   “ cima 5146   ∘ ccom 5147  Rel wrel 5148  Fun wfun 5920   Fn wfn 5921  ⟶wf 5922  –onto→wfo 5924  –1-1-onto→wf1o 5925  ‘cfv 5926  (class class class)co 6690  ℂcc 9972  ℝcr 9973  0cc0 9974  -∞cmnf 10110  ℝ*cxr 10111   < clt 10112   − cmin 10304  -cneg 10305  ℝ+crp 11870  (,)cioo 12213  (,]cioc 12214  ℑcim 13882  abscabs 14018  expce 14836  πcpi 14841   ↾t crest 16128  TopOpenctopn 16129  ∞Metcxmt 19779  ballcbl 19781  ℂfldccnfld 19794  Topctop 20746   Cn ccn 21076  –cn→ccncf 22726  logclog 24346 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-inf2 8576  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051  ax-pre-sup 10052  ax-addf 10053  ax-mulf 10054 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-fal 1529  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-int 4508  df-iun 4554  df-iin 4555  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-se 5103  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-isom 5935  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-of 6939  df-om 7108  df-1st 7210  df-2nd 7211  df-supp 7341  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-1o 7605  df-2o 7606  df-oadd 7609  df-er 7787  df-map 7901  df-pm 7902  df-ixp 7951  df-en 7998  df-dom 7999  df-sdom 8000  df-fin 8001  df-fsupp 8317  df-fi 8358  df-sup 8389  df-inf 8390  df-oi 8456  df-card 8803  df-cda 9028  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-div 10723  df-nn 11059  df-2 11117  df-3 11118  df-4 11119  df-5 11120  df-6 11121  df-7 11122  df-8 11123  df-9 11124  df-n0 11331  df-z 11416  df-dec 11532  df-uz 11726  df-q 11827  df-rp 11871  df-xneg 11984  df-xadd 11985  df-xmul 11986  df-ioo 12217  df-ioc 12218  df-ico 12219  df-icc 12220  df-fz 12365  df-fzo 12505  df-fl 12633  df-mod 12709  df-seq 12842  df-exp 12901  df-fac 13101  df-bc 13130  df-hash 13158  df-shft 13851  df-cj 13883  df-re 13884  df-im 13885  df-sqrt 14019  df-abs 14020  df-limsup 14246  df-clim 14263  df-rlim 14264  df-sum 14461  df-ef 14842  df-sin 14844  df-cos 14845  df-tan 14846  df-pi 14847  df-struct 15906  df-ndx 15907  df-slot 15908  df-base 15910  df-sets 15911  df-ress 15912  df-plusg 16001  df-mulr 16002  df-starv 16003  df-sca 16004  df-vsca 16005  df-ip 16006  df-tset 16007  df-ple 16008  df-ds 16011  df-unif 16012  df-hom 16013  df-cco 16014  df-rest 16130  df-topn 16131  df-0g 16149  df-gsum 16150  df-topgen 16151  df-pt 16152  df-prds 16155  df-xrs 16209  df-qtop 16214  df-imas 16215  df-xps 16217  df-mre 16293  df-mrc 16294  df-acs 16296  df-mgm 17289  df-sgrp 17331  df-mnd 17342  df-submnd 17383  df-mulg 17588  df-cntz 17796  df-cmn 18241  df-psmet 19786  df-xmet 19787  df-met 19788  df-bl 19789  df-mopn 19790  df-fbas 19791  df-fg 19792  df-cnfld 19795  df-top 20747  df-topon 20764  df-topsp 20785  df-bases 20798  df-cld 20871  df-ntr 20872  df-cls 20873  df-nei 20950  df-lp 20988  df-perf 20989  df-cn 21079  df-cnp 21080  df-haus 21167  df-cmp 21238  df-tx 21413  df-hmeo 21606  df-fil 21697  df-fm 21789  df-flim 21790  df-flf 21791  df-xms 22172  df-ms 22173  df-tms 22174  df-cncf 22728  df-limc 23675  df-dv 23676  df-log 24348 This theorem is referenced by:  efopn  24449
 Copyright terms: Public domain W3C validator