![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > eflog | Structured version Visualization version GIF version |
Description: Relationship between the natural logarithm function and the exponential function. (Contributed by Paul Chapman, 21-Apr-2008.) |
Ref | Expression |
---|---|
eflog | ⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (exp‘(log‘𝐴)) = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dflog2 24427 | . . . 4 ⊢ log = ◡(exp ↾ ran log) | |
2 | 1 | fveq1i 6305 | . . 3 ⊢ (log‘𝐴) = (◡(exp ↾ ran log)‘𝐴) |
3 | 2 | fveq2i 6307 | . 2 ⊢ ((exp ↾ ran log)‘(log‘𝐴)) = ((exp ↾ ran log)‘(◡(exp ↾ ran log)‘𝐴)) |
4 | logrncl 24434 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (log‘𝐴) ∈ ran log) | |
5 | fvres 6320 | . . 3 ⊢ ((log‘𝐴) ∈ ran log → ((exp ↾ ran log)‘(log‘𝐴)) = (exp‘(log‘𝐴))) | |
6 | 4, 5 | syl 17 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → ((exp ↾ ran log)‘(log‘𝐴)) = (exp‘(log‘𝐴))) |
7 | eldifsn 4425 | . . 3 ⊢ (𝐴 ∈ (ℂ ∖ {0}) ↔ (𝐴 ∈ ℂ ∧ 𝐴 ≠ 0)) | |
8 | eff1o2 24430 | . . . 4 ⊢ (exp ↾ ran log):ran log–1-1-onto→(ℂ ∖ {0}) | |
9 | f1ocnvfv2 6648 | . . . 4 ⊢ (((exp ↾ ran log):ran log–1-1-onto→(ℂ ∖ {0}) ∧ 𝐴 ∈ (ℂ ∖ {0})) → ((exp ↾ ran log)‘(◡(exp ↾ ran log)‘𝐴)) = 𝐴) | |
10 | 8, 9 | mpan 708 | . . 3 ⊢ (𝐴 ∈ (ℂ ∖ {0}) → ((exp ↾ ran log)‘(◡(exp ↾ ran log)‘𝐴)) = 𝐴) |
11 | 7, 10 | sylbir 225 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → ((exp ↾ ran log)‘(◡(exp ↾ ran log)‘𝐴)) = 𝐴) |
12 | 3, 6, 11 | 3eqtr3a 2782 | 1 ⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (exp‘(log‘𝐴)) = 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 = wceq 1596 ∈ wcel 2103 ≠ wne 2896 ∖ cdif 3677 {csn 4285 ◡ccnv 5217 ran crn 5219 ↾ cres 5220 –1-1-onto→wf1o 6000 ‘cfv 6001 ℂcc 10047 0cc0 10049 expce 14912 logclog 24421 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1835 ax-4 1850 ax-5 1952 ax-6 2018 ax-7 2054 ax-8 2105 ax-9 2112 ax-10 2132 ax-11 2147 ax-12 2160 ax-13 2355 ax-ext 2704 ax-rep 4879 ax-sep 4889 ax-nul 4897 ax-pow 4948 ax-pr 5011 ax-un 7066 ax-inf2 8651 ax-cnex 10105 ax-resscn 10106 ax-1cn 10107 ax-icn 10108 ax-addcl 10109 ax-addrcl 10110 ax-mulcl 10111 ax-mulrcl 10112 ax-mulcom 10113 ax-addass 10114 ax-mulass 10115 ax-distr 10116 ax-i2m1 10117 ax-1ne0 10118 ax-1rid 10119 ax-rnegex 10120 ax-rrecex 10121 ax-cnre 10122 ax-pre-lttri 10123 ax-pre-lttrn 10124 ax-pre-ltadd 10125 ax-pre-mulgt0 10126 ax-pre-sup 10127 ax-addf 10128 ax-mulf 10129 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1599 df-fal 1602 df-ex 1818 df-nf 1823 df-sb 2011 df-eu 2575 df-mo 2576 df-clab 2711 df-cleq 2717 df-clel 2720 df-nfc 2855 df-ne 2897 df-nel 3000 df-ral 3019 df-rex 3020 df-reu 3021 df-rmo 3022 df-rab 3023 df-v 3306 df-sbc 3542 df-csb 3640 df-dif 3683 df-un 3685 df-in 3687 df-ss 3694 df-pss 3696 df-nul 4024 df-if 4195 df-pw 4268 df-sn 4286 df-pr 4288 df-tp 4290 df-op 4292 df-uni 4545 df-int 4584 df-iun 4630 df-iin 4631 df-br 4761 df-opab 4821 df-mpt 4838 df-tr 4861 df-id 5128 df-eprel 5133 df-po 5139 df-so 5140 df-fr 5177 df-se 5178 df-we 5179 df-xp 5224 df-rel 5225 df-cnv 5226 df-co 5227 df-dm 5228 df-rn 5229 df-res 5230 df-ima 5231 df-pred 5793 df-ord 5839 df-on 5840 df-lim 5841 df-suc 5842 df-iota 5964 df-fun 6003 df-fn 6004 df-f 6005 df-f1 6006 df-fo 6007 df-f1o 6008 df-fv 6009 df-isom 6010 df-riota 6726 df-ov 6768 df-oprab 6769 df-mpt2 6770 df-of 7014 df-om 7183 df-1st 7285 df-2nd 7286 df-supp 7416 df-wrecs 7527 df-recs 7588 df-rdg 7626 df-1o 7680 df-2o 7681 df-oadd 7684 df-er 7862 df-map 7976 df-pm 7977 df-ixp 8026 df-en 8073 df-dom 8074 df-sdom 8075 df-fin 8076 df-fsupp 8392 df-fi 8433 df-sup 8464 df-inf 8465 df-oi 8531 df-card 8878 df-cda 9103 df-pnf 10189 df-mnf 10190 df-xr 10191 df-ltxr 10192 df-le 10193 df-sub 10381 df-neg 10382 df-div 10798 df-nn 11134 df-2 11192 df-3 11193 df-4 11194 df-5 11195 df-6 11196 df-7 11197 df-8 11198 df-9 11199 df-n0 11406 df-z 11491 df-dec 11607 df-uz 11801 df-q 11903 df-rp 11947 df-xneg 12060 df-xadd 12061 df-xmul 12062 df-ioo 12293 df-ioc 12294 df-ico 12295 df-icc 12296 df-fz 12441 df-fzo 12581 df-fl 12708 df-mod 12784 df-seq 12917 df-exp 12976 df-fac 13176 df-bc 13205 df-hash 13233 df-shft 13927 df-cj 13959 df-re 13960 df-im 13961 df-sqrt 14095 df-abs 14096 df-limsup 14322 df-clim 14339 df-rlim 14340 df-sum 14537 df-ef 14918 df-sin 14920 df-cos 14921 df-pi 14923 df-struct 15982 df-ndx 15983 df-slot 15984 df-base 15986 df-sets 15987 df-ress 15988 df-plusg 16077 df-mulr 16078 df-starv 16079 df-sca 16080 df-vsca 16081 df-ip 16082 df-tset 16083 df-ple 16084 df-ds 16087 df-unif 16088 df-hom 16089 df-cco 16090 df-rest 16206 df-topn 16207 df-0g 16225 df-gsum 16226 df-topgen 16227 df-pt 16228 df-prds 16231 df-xrs 16285 df-qtop 16290 df-imas 16291 df-xps 16293 df-mre 16369 df-mrc 16370 df-acs 16372 df-mgm 17364 df-sgrp 17406 df-mnd 17417 df-submnd 17458 df-mulg 17663 df-cntz 17871 df-cmn 18316 df-psmet 19861 df-xmet 19862 df-met 19863 df-bl 19864 df-mopn 19865 df-fbas 19866 df-fg 19867 df-cnfld 19870 df-top 20822 df-topon 20839 df-topsp 20860 df-bases 20873 df-cld 20946 df-ntr 20947 df-cls 20948 df-nei 21025 df-lp 21063 df-perf 21064 df-cn 21154 df-cnp 21155 df-haus 21242 df-tx 21488 df-hmeo 21681 df-fil 21772 df-fm 21864 df-flim 21865 df-flf 21866 df-xms 22247 df-ms 22248 df-tms 22249 df-cncf 22803 df-limc 23750 df-dv 23751 df-log 24423 |
This theorem is referenced by: logeq0im1 24444 reeflog 24447 lognegb 24456 explog 24460 relog 24463 eflogeq 24468 logcj 24472 efiarg 24473 logimul 24480 logneg2 24481 logmul2 24482 logdiv2 24483 logcnlem4 24511 cxpeq 24618 logrec 24621 cxplogb 24644 ang180lem1 24659 asinneg 24733 efiasin 24735 efiatan2 24764 2efiatan 24765 atantan 24770 birthdaylem2 24799 gamcvg 24902 gamp1 24904 gamcvg2lem 24905 iprodgam 31856 stirlinglem14 40724 |
Copyright terms: Public domain | W3C validator |