![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > efif1olem3 | Structured version Visualization version GIF version |
Description: Lemma for efif1o 24462. (Contributed by Mario Carneiro, 8-May-2015.) |
Ref | Expression |
---|---|
efif1o.1 | ⊢ 𝐹 = (𝑤 ∈ 𝐷 ↦ (exp‘(i · 𝑤))) |
efif1o.2 | ⊢ 𝐶 = (◡abs “ {1}) |
Ref | Expression |
---|---|
efif1olem3 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → (ℑ‘(√‘𝑥)) ∈ (-1[,]1)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpr 479 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → 𝑥 ∈ 𝐶) | |
2 | efif1o.2 | . . . . . . 7 ⊢ 𝐶 = (◡abs “ {1}) | |
3 | 1, 2 | syl6eleq 2837 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → 𝑥 ∈ (◡abs “ {1})) |
4 | absf 14247 | . . . . . . 7 ⊢ abs:ℂ⟶ℝ | |
5 | ffn 6194 | . . . . . . 7 ⊢ (abs:ℂ⟶ℝ → abs Fn ℂ) | |
6 | fniniseg 6489 | . . . . . . 7 ⊢ (abs Fn ℂ → (𝑥 ∈ (◡abs “ {1}) ↔ (𝑥 ∈ ℂ ∧ (abs‘𝑥) = 1))) | |
7 | 4, 5, 6 | mp2b 10 | . . . . . 6 ⊢ (𝑥 ∈ (◡abs “ {1}) ↔ (𝑥 ∈ ℂ ∧ (abs‘𝑥) = 1)) |
8 | 3, 7 | sylib 208 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → (𝑥 ∈ ℂ ∧ (abs‘𝑥) = 1)) |
9 | 8 | simpld 477 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → 𝑥 ∈ ℂ) |
10 | 9 | sqrtcld 14346 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → (√‘𝑥) ∈ ℂ) |
11 | 10 | imcld 14105 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → (ℑ‘(√‘𝑥)) ∈ ℝ) |
12 | absimle 14219 | . . . . . 6 ⊢ ((√‘𝑥) ∈ ℂ → (abs‘(ℑ‘(√‘𝑥))) ≤ (abs‘(√‘𝑥))) | |
13 | 10, 12 | syl 17 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → (abs‘(ℑ‘(√‘𝑥))) ≤ (abs‘(√‘𝑥))) |
14 | 9 | sqsqrtd 14348 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → ((√‘𝑥)↑2) = 𝑥) |
15 | 14 | fveq2d 6344 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → (abs‘((√‘𝑥)↑2)) = (abs‘𝑥)) |
16 | 2nn0 11472 | . . . . . . . . 9 ⊢ 2 ∈ ℕ0 | |
17 | absexp 14214 | . . . . . . . . 9 ⊢ (((√‘𝑥) ∈ ℂ ∧ 2 ∈ ℕ0) → (abs‘((√‘𝑥)↑2)) = ((abs‘(√‘𝑥))↑2)) | |
18 | 10, 16, 17 | sylancl 697 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → (abs‘((√‘𝑥)↑2)) = ((abs‘(√‘𝑥))↑2)) |
19 | 8 | simprd 482 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → (abs‘𝑥) = 1) |
20 | 15, 18, 19 | 3eqtr3d 2790 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → ((abs‘(√‘𝑥))↑2) = 1) |
21 | sq1 13123 | . . . . . . 7 ⊢ (1↑2) = 1 | |
22 | 20, 21 | syl6eqr 2800 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → ((abs‘(√‘𝑥))↑2) = (1↑2)) |
23 | 10 | abscld 14345 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → (abs‘(√‘𝑥)) ∈ ℝ) |
24 | 10 | absge0d 14353 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → 0 ≤ (abs‘(√‘𝑥))) |
25 | 1re 10202 | . . . . . . . 8 ⊢ 1 ∈ ℝ | |
26 | 0le1 10714 | . . . . . . . 8 ⊢ 0 ≤ 1 | |
27 | sq11 13101 | . . . . . . . 8 ⊢ ((((abs‘(√‘𝑥)) ∈ ℝ ∧ 0 ≤ (abs‘(√‘𝑥))) ∧ (1 ∈ ℝ ∧ 0 ≤ 1)) → (((abs‘(√‘𝑥))↑2) = (1↑2) ↔ (abs‘(√‘𝑥)) = 1)) | |
28 | 25, 26, 27 | mpanr12 723 | . . . . . . 7 ⊢ (((abs‘(√‘𝑥)) ∈ ℝ ∧ 0 ≤ (abs‘(√‘𝑥))) → (((abs‘(√‘𝑥))↑2) = (1↑2) ↔ (abs‘(√‘𝑥)) = 1)) |
29 | 23, 24, 28 | syl2anc 696 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → (((abs‘(√‘𝑥))↑2) = (1↑2) ↔ (abs‘(√‘𝑥)) = 1)) |
30 | 22, 29 | mpbid 222 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → (abs‘(√‘𝑥)) = 1) |
31 | 13, 30 | breqtrd 4818 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → (abs‘(ℑ‘(√‘𝑥))) ≤ 1) |
32 | absle 14225 | . . . . 5 ⊢ (((ℑ‘(√‘𝑥)) ∈ ℝ ∧ 1 ∈ ℝ) → ((abs‘(ℑ‘(√‘𝑥))) ≤ 1 ↔ (-1 ≤ (ℑ‘(√‘𝑥)) ∧ (ℑ‘(√‘𝑥)) ≤ 1))) | |
33 | 11, 25, 32 | sylancl 697 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → ((abs‘(ℑ‘(√‘𝑥))) ≤ 1 ↔ (-1 ≤ (ℑ‘(√‘𝑥)) ∧ (ℑ‘(√‘𝑥)) ≤ 1))) |
34 | 31, 33 | mpbid 222 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → (-1 ≤ (ℑ‘(√‘𝑥)) ∧ (ℑ‘(√‘𝑥)) ≤ 1)) |
35 | 34 | simpld 477 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → -1 ≤ (ℑ‘(√‘𝑥))) |
36 | 34 | simprd 482 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → (ℑ‘(√‘𝑥)) ≤ 1) |
37 | neg1rr 11288 | . . 3 ⊢ -1 ∈ ℝ | |
38 | 37, 25 | elicc2i 12403 | . 2 ⊢ ((ℑ‘(√‘𝑥)) ∈ (-1[,]1) ↔ ((ℑ‘(√‘𝑥)) ∈ ℝ ∧ -1 ≤ (ℑ‘(√‘𝑥)) ∧ (ℑ‘(√‘𝑥)) ≤ 1)) |
39 | 11, 35, 36, 38 | syl3anbrc 1407 | 1 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → (ℑ‘(√‘𝑥)) ∈ (-1[,]1)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 383 = wceq 1620 ∈ wcel 2127 {csn 4309 class class class wbr 4792 ↦ cmpt 4869 ◡ccnv 5253 “ cima 5257 Fn wfn 6032 ⟶wf 6033 ‘cfv 6037 (class class class)co 6801 ℂcc 10097 ℝcr 10098 0cc0 10099 1c1 10100 ici 10101 · cmul 10104 ≤ cle 10238 -cneg 10430 2c2 11233 ℕ0cn0 11455 [,]cicc 12342 ↑cexp 13025 ℑcim 14008 √csqrt 14143 abscabs 14144 expce 14962 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1859 ax-4 1874 ax-5 1976 ax-6 2042 ax-7 2078 ax-8 2129 ax-9 2136 ax-10 2156 ax-11 2171 ax-12 2184 ax-13 2379 ax-ext 2728 ax-sep 4921 ax-nul 4929 ax-pow 4980 ax-pr 5043 ax-un 7102 ax-cnex 10155 ax-resscn 10156 ax-1cn 10157 ax-icn 10158 ax-addcl 10159 ax-addrcl 10160 ax-mulcl 10161 ax-mulrcl 10162 ax-mulcom 10163 ax-addass 10164 ax-mulass 10165 ax-distr 10166 ax-i2m1 10167 ax-1ne0 10168 ax-1rid 10169 ax-rnegex 10170 ax-rrecex 10171 ax-cnre 10172 ax-pre-lttri 10173 ax-pre-lttrn 10174 ax-pre-ltadd 10175 ax-pre-mulgt0 10176 ax-pre-sup 10177 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1623 df-ex 1842 df-nf 1847 df-sb 2035 df-eu 2599 df-mo 2600 df-clab 2735 df-cleq 2741 df-clel 2744 df-nfc 2879 df-ne 2921 df-nel 3024 df-ral 3043 df-rex 3044 df-reu 3045 df-rmo 3046 df-rab 3047 df-v 3330 df-sbc 3565 df-csb 3663 df-dif 3706 df-un 3708 df-in 3710 df-ss 3717 df-pss 3719 df-nul 4047 df-if 4219 df-pw 4292 df-sn 4310 df-pr 4312 df-tp 4314 df-op 4316 df-uni 4577 df-iun 4662 df-br 4793 df-opab 4853 df-mpt 4870 df-tr 4893 df-id 5162 df-eprel 5167 df-po 5175 df-so 5176 df-fr 5213 df-we 5215 df-xp 5260 df-rel 5261 df-cnv 5262 df-co 5263 df-dm 5264 df-rn 5265 df-res 5266 df-ima 5267 df-pred 5829 df-ord 5875 df-on 5876 df-lim 5877 df-suc 5878 df-iota 6000 df-fun 6039 df-fn 6040 df-f 6041 df-f1 6042 df-fo 6043 df-f1o 6044 df-fv 6045 df-riota 6762 df-ov 6804 df-oprab 6805 df-mpt2 6806 df-om 7219 df-2nd 7322 df-wrecs 7564 df-recs 7625 df-rdg 7663 df-er 7899 df-en 8110 df-dom 8111 df-sdom 8112 df-sup 8501 df-pnf 10239 df-mnf 10240 df-xr 10241 df-ltxr 10242 df-le 10243 df-sub 10431 df-neg 10432 df-div 10848 df-nn 11184 df-2 11242 df-3 11243 df-n0 11456 df-z 11541 df-uz 11851 df-rp 11997 df-icc 12346 df-seq 12967 df-exp 13026 df-cj 14009 df-re 14010 df-im 14011 df-sqrt 14145 df-abs 14146 |
This theorem is referenced by: efif1olem4 24461 |
Copyright terms: Public domain | W3C validator |