MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  efieq1re Structured version   Visualization version   GIF version

Theorem efieq1re 15148
Description: A number whose imaginary exponential is one is real. (Contributed by NM, 21-Aug-2008.)
Assertion
Ref Expression
efieq1re ((𝐴 ∈ ℂ ∧ (exp‘(i · 𝐴)) = 1) → 𝐴 ∈ ℝ)

Proof of Theorem efieq1re
StepHypRef Expression
1 replim 14075 . . . . . . . . 9 (𝐴 ∈ ℂ → 𝐴 = ((ℜ‘𝐴) + (i · (ℑ‘𝐴))))
21oveq2d 6830 . . . . . . . 8 (𝐴 ∈ ℂ → (i · 𝐴) = (i · ((ℜ‘𝐴) + (i · (ℑ‘𝐴)))))
3 recl 14069 . . . . . . . . . . 11 (𝐴 ∈ ℂ → (ℜ‘𝐴) ∈ ℝ)
43recnd 10280 . . . . . . . . . 10 (𝐴 ∈ ℂ → (ℜ‘𝐴) ∈ ℂ)
5 ax-icn 10207 . . . . . . . . . . 11 i ∈ ℂ
6 imcl 14070 . . . . . . . . . . . 12 (𝐴 ∈ ℂ → (ℑ‘𝐴) ∈ ℝ)
76recnd 10280 . . . . . . . . . . 11 (𝐴 ∈ ℂ → (ℑ‘𝐴) ∈ ℂ)
8 mulcl 10232 . . . . . . . . . . 11 ((i ∈ ℂ ∧ (ℑ‘𝐴) ∈ ℂ) → (i · (ℑ‘𝐴)) ∈ ℂ)
95, 7, 8sylancr 698 . . . . . . . . . 10 (𝐴 ∈ ℂ → (i · (ℑ‘𝐴)) ∈ ℂ)
10 adddi 10237 . . . . . . . . . . 11 ((i ∈ ℂ ∧ (ℜ‘𝐴) ∈ ℂ ∧ (i · (ℑ‘𝐴)) ∈ ℂ) → (i · ((ℜ‘𝐴) + (i · (ℑ‘𝐴)))) = ((i · (ℜ‘𝐴)) + (i · (i · (ℑ‘𝐴)))))
115, 10mp3an1 1560 . . . . . . . . . 10 (((ℜ‘𝐴) ∈ ℂ ∧ (i · (ℑ‘𝐴)) ∈ ℂ) → (i · ((ℜ‘𝐴) + (i · (ℑ‘𝐴)))) = ((i · (ℜ‘𝐴)) + (i · (i · (ℑ‘𝐴)))))
124, 9, 11syl2anc 696 . . . . . . . . 9 (𝐴 ∈ ℂ → (i · ((ℜ‘𝐴) + (i · (ℑ‘𝐴)))) = ((i · (ℜ‘𝐴)) + (i · (i · (ℑ‘𝐴)))))
13 ixi 10868 . . . . . . . . . . . 12 (i · i) = -1
1413oveq1i 6824 . . . . . . . . . . 11 ((i · i) · (ℑ‘𝐴)) = (-1 · (ℑ‘𝐴))
15 mulass 10236 . . . . . . . . . . . . 13 ((i ∈ ℂ ∧ i ∈ ℂ ∧ (ℑ‘𝐴) ∈ ℂ) → ((i · i) · (ℑ‘𝐴)) = (i · (i · (ℑ‘𝐴))))
165, 5, 15mp3an12 1563 . . . . . . . . . . . 12 ((ℑ‘𝐴) ∈ ℂ → ((i · i) · (ℑ‘𝐴)) = (i · (i · (ℑ‘𝐴))))
177, 16syl 17 . . . . . . . . . . 11 (𝐴 ∈ ℂ → ((i · i) · (ℑ‘𝐴)) = (i · (i · (ℑ‘𝐴))))
187mulm1d 10694 . . . . . . . . . . 11 (𝐴 ∈ ℂ → (-1 · (ℑ‘𝐴)) = -(ℑ‘𝐴))
1914, 17, 183eqtr3a 2818 . . . . . . . . . 10 (𝐴 ∈ ℂ → (i · (i · (ℑ‘𝐴))) = -(ℑ‘𝐴))
2019oveq2d 6830 . . . . . . . . 9 (𝐴 ∈ ℂ → ((i · (ℜ‘𝐴)) + (i · (i · (ℑ‘𝐴)))) = ((i · (ℜ‘𝐴)) + -(ℑ‘𝐴)))
2112, 20eqtrd 2794 . . . . . . . 8 (𝐴 ∈ ℂ → (i · ((ℜ‘𝐴) + (i · (ℑ‘𝐴)))) = ((i · (ℜ‘𝐴)) + -(ℑ‘𝐴)))
222, 21eqtrd 2794 . . . . . . 7 (𝐴 ∈ ℂ → (i · 𝐴) = ((i · (ℜ‘𝐴)) + -(ℑ‘𝐴)))
2322fveq2d 6357 . . . . . 6 (𝐴 ∈ ℂ → (exp‘(i · 𝐴)) = (exp‘((i · (ℜ‘𝐴)) + -(ℑ‘𝐴))))
24 mulcl 10232 . . . . . . . 8 ((i ∈ ℂ ∧ (ℜ‘𝐴) ∈ ℂ) → (i · (ℜ‘𝐴)) ∈ ℂ)
255, 4, 24sylancr 698 . . . . . . 7 (𝐴 ∈ ℂ → (i · (ℜ‘𝐴)) ∈ ℂ)
266renegcld 10669 . . . . . . . 8 (𝐴 ∈ ℂ → -(ℑ‘𝐴) ∈ ℝ)
2726recnd 10280 . . . . . . 7 (𝐴 ∈ ℂ → -(ℑ‘𝐴) ∈ ℂ)
28 efadd 15043 . . . . . . 7 (((i · (ℜ‘𝐴)) ∈ ℂ ∧ -(ℑ‘𝐴) ∈ ℂ) → (exp‘((i · (ℜ‘𝐴)) + -(ℑ‘𝐴))) = ((exp‘(i · (ℜ‘𝐴))) · (exp‘-(ℑ‘𝐴))))
2925, 27, 28syl2anc 696 . . . . . 6 (𝐴 ∈ ℂ → (exp‘((i · (ℜ‘𝐴)) + -(ℑ‘𝐴))) = ((exp‘(i · (ℜ‘𝐴))) · (exp‘-(ℑ‘𝐴))))
3023, 29eqtrd 2794 . . . . 5 (𝐴 ∈ ℂ → (exp‘(i · 𝐴)) = ((exp‘(i · (ℜ‘𝐴))) · (exp‘-(ℑ‘𝐴))))
3130eqeq1d 2762 . . . 4 (𝐴 ∈ ℂ → ((exp‘(i · 𝐴)) = 1 ↔ ((exp‘(i · (ℜ‘𝐴))) · (exp‘-(ℑ‘𝐴))) = 1))
32 efcl 15032 . . . . . . . . 9 ((i · (ℜ‘𝐴)) ∈ ℂ → (exp‘(i · (ℜ‘𝐴))) ∈ ℂ)
3325, 32syl 17 . . . . . . . 8 (𝐴 ∈ ℂ → (exp‘(i · (ℜ‘𝐴))) ∈ ℂ)
34 efcl 15032 . . . . . . . . 9 (-(ℑ‘𝐴) ∈ ℂ → (exp‘-(ℑ‘𝐴)) ∈ ℂ)
3527, 34syl 17 . . . . . . . 8 (𝐴 ∈ ℂ → (exp‘-(ℑ‘𝐴)) ∈ ℂ)
3633, 35absmuld 14412 . . . . . . 7 (𝐴 ∈ ℂ → (abs‘((exp‘(i · (ℜ‘𝐴))) · (exp‘-(ℑ‘𝐴)))) = ((abs‘(exp‘(i · (ℜ‘𝐴)))) · (abs‘(exp‘-(ℑ‘𝐴)))))
37 absefi 15145 . . . . . . . . 9 ((ℜ‘𝐴) ∈ ℝ → (abs‘(exp‘(i · (ℜ‘𝐴)))) = 1)
383, 37syl 17 . . . . . . . 8 (𝐴 ∈ ℂ → (abs‘(exp‘(i · (ℜ‘𝐴)))) = 1)
3926reefcld 15037 . . . . . . . . 9 (𝐴 ∈ ℂ → (exp‘-(ℑ‘𝐴)) ∈ ℝ)
40 efgt0 15052 . . . . . . . . . . 11 (-(ℑ‘𝐴) ∈ ℝ → 0 < (exp‘-(ℑ‘𝐴)))
4126, 40syl 17 . . . . . . . . . 10 (𝐴 ∈ ℂ → 0 < (exp‘-(ℑ‘𝐴)))
42 0re 10252 . . . . . . . . . . 11 0 ∈ ℝ
43 ltle 10338 . . . . . . . . . . 11 ((0 ∈ ℝ ∧ (exp‘-(ℑ‘𝐴)) ∈ ℝ) → (0 < (exp‘-(ℑ‘𝐴)) → 0 ≤ (exp‘-(ℑ‘𝐴))))
4442, 43mpan 708 . . . . . . . . . 10 ((exp‘-(ℑ‘𝐴)) ∈ ℝ → (0 < (exp‘-(ℑ‘𝐴)) → 0 ≤ (exp‘-(ℑ‘𝐴))))
4539, 41, 44sylc 65 . . . . . . . . 9 (𝐴 ∈ ℂ → 0 ≤ (exp‘-(ℑ‘𝐴)))
4639, 45absidd 14380 . . . . . . . 8 (𝐴 ∈ ℂ → (abs‘(exp‘-(ℑ‘𝐴))) = (exp‘-(ℑ‘𝐴)))
4738, 46oveq12d 6832 . . . . . . 7 (𝐴 ∈ ℂ → ((abs‘(exp‘(i · (ℜ‘𝐴)))) · (abs‘(exp‘-(ℑ‘𝐴)))) = (1 · (exp‘-(ℑ‘𝐴))))
4835mulid2d 10270 . . . . . . 7 (𝐴 ∈ ℂ → (1 · (exp‘-(ℑ‘𝐴))) = (exp‘-(ℑ‘𝐴)))
4936, 47, 483eqtrrd 2799 . . . . . 6 (𝐴 ∈ ℂ → (exp‘-(ℑ‘𝐴)) = (abs‘((exp‘(i · (ℜ‘𝐴))) · (exp‘-(ℑ‘𝐴)))))
50 fveq2 6353 . . . . . 6 (((exp‘(i · (ℜ‘𝐴))) · (exp‘-(ℑ‘𝐴))) = 1 → (abs‘((exp‘(i · (ℜ‘𝐴))) · (exp‘-(ℑ‘𝐴)))) = (abs‘1))
5149, 50sylan9eq 2814 . . . . 5 ((𝐴 ∈ ℂ ∧ ((exp‘(i · (ℜ‘𝐴))) · (exp‘-(ℑ‘𝐴))) = 1) → (exp‘-(ℑ‘𝐴)) = (abs‘1))
5251ex 449 . . . 4 (𝐴 ∈ ℂ → (((exp‘(i · (ℜ‘𝐴))) · (exp‘-(ℑ‘𝐴))) = 1 → (exp‘-(ℑ‘𝐴)) = (abs‘1)))
5331, 52sylbid 230 . . 3 (𝐴 ∈ ℂ → ((exp‘(i · 𝐴)) = 1 → (exp‘-(ℑ‘𝐴)) = (abs‘1)))
547negeq0d 10596 . . . 4 (𝐴 ∈ ℂ → ((ℑ‘𝐴) = 0 ↔ -(ℑ‘𝐴) = 0))
55 reim0b 14078 . . . 4 (𝐴 ∈ ℂ → (𝐴 ∈ ℝ ↔ (ℑ‘𝐴) = 0))
56 ef0 15040 . . . . . . 7 (exp‘0) = 1
57 abs1 14256 . . . . . . 7 (abs‘1) = 1
5856, 57eqtr4i 2785 . . . . . 6 (exp‘0) = (abs‘1)
5958eqeq2i 2772 . . . . 5 ((exp‘-(ℑ‘𝐴)) = (exp‘0) ↔ (exp‘-(ℑ‘𝐴)) = (abs‘1))
60 reef11 15068 . . . . . 6 ((-(ℑ‘𝐴) ∈ ℝ ∧ 0 ∈ ℝ) → ((exp‘-(ℑ‘𝐴)) = (exp‘0) ↔ -(ℑ‘𝐴) = 0))
6126, 42, 60sylancl 697 . . . . 5 (𝐴 ∈ ℂ → ((exp‘-(ℑ‘𝐴)) = (exp‘0) ↔ -(ℑ‘𝐴) = 0))
6259, 61syl5bbr 274 . . . 4 (𝐴 ∈ ℂ → ((exp‘-(ℑ‘𝐴)) = (abs‘1) ↔ -(ℑ‘𝐴) = 0))
6354, 55, 623bitr4rd 301 . . 3 (𝐴 ∈ ℂ → ((exp‘-(ℑ‘𝐴)) = (abs‘1) ↔ 𝐴 ∈ ℝ))
6453, 63sylibd 229 . 2 (𝐴 ∈ ℂ → ((exp‘(i · 𝐴)) = 1 → 𝐴 ∈ ℝ))
6564imp 444 1 ((𝐴 ∈ ℂ ∧ (exp‘(i · 𝐴)) = 1) → 𝐴 ∈ ℝ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383   = wceq 1632  wcel 2139   class class class wbr 4804  cfv 6049  (class class class)co 6814  cc 10146  cr 10147  0cc0 10148  1c1 10149  ici 10150   + caddc 10151   · cmul 10153   < clt 10286  cle 10287  -cneg 10479  cre 14056  cim 14057  abscabs 14193  expce 15011
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-rep 4923  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7115  ax-inf2 8713  ax-cnex 10204  ax-resscn 10205  ax-1cn 10206  ax-icn 10207  ax-addcl 10208  ax-addrcl 10209  ax-mulcl 10210  ax-mulrcl 10211  ax-mulcom 10212  ax-addass 10213  ax-mulass 10214  ax-distr 10215  ax-i2m1 10216  ax-1ne0 10217  ax-1rid 10218  ax-rnegex 10219  ax-rrecex 10220  ax-cnre 10221  ax-pre-lttri 10222  ax-pre-lttrn 10223  ax-pre-ltadd 10224  ax-pre-mulgt0 10225  ax-pre-sup 10226  ax-addf 10227  ax-mulf 10228
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-fal 1638  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-nel 3036  df-ral 3055  df-rex 3056  df-reu 3057  df-rmo 3058  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-pss 3731  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-tp 4326  df-op 4328  df-uni 4589  df-int 4628  df-iun 4674  df-br 4805  df-opab 4865  df-mpt 4882  df-tr 4905  df-id 5174  df-eprel 5179  df-po 5187  df-so 5188  df-fr 5225  df-se 5226  df-we 5227  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-pred 5841  df-ord 5887  df-on 5888  df-lim 5889  df-suc 5890  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-isom 6058  df-riota 6775  df-ov 6817  df-oprab 6818  df-mpt2 6819  df-om 7232  df-1st 7334  df-2nd 7335  df-wrecs 7577  df-recs 7638  df-rdg 7676  df-1o 7730  df-oadd 7734  df-er 7913  df-pm 8028  df-en 8124  df-dom 8125  df-sdom 8126  df-fin 8127  df-sup 8515  df-inf 8516  df-oi 8582  df-card 8975  df-pnf 10288  df-mnf 10289  df-xr 10290  df-ltxr 10291  df-le 10292  df-sub 10480  df-neg 10481  df-div 10897  df-nn 11233  df-2 11291  df-3 11292  df-n0 11505  df-z 11590  df-uz 11900  df-rp 12046  df-ico 12394  df-fz 12540  df-fzo 12680  df-fl 12807  df-seq 13016  df-exp 13075  df-fac 13275  df-bc 13304  df-hash 13332  df-shft 14026  df-cj 14058  df-re 14059  df-im 14060  df-sqrt 14194  df-abs 14195  df-limsup 14421  df-clim 14438  df-rlim 14439  df-sum 14636  df-ef 15017  df-sin 15019  df-cos 15020
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator