MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  efgt0 Structured version   Visualization version   GIF version

Theorem efgt0 15024
Description: The exponential function of a real number is greater than 0. (Contributed by Paul Chapman, 21-Aug-2007.) (Revised by Mario Carneiro, 30-Apr-2014.)
Assertion
Ref Expression
efgt0 (𝐴 ∈ ℝ → 0 < (exp‘𝐴))

Proof of Theorem efgt0
StepHypRef Expression
1 reefcl 15008 . 2 (𝐴 ∈ ℝ → (exp‘𝐴) ∈ ℝ)
2 rehalfcl 11442 . . . . 5 (𝐴 ∈ ℝ → (𝐴 / 2) ∈ ℝ)
32reefcld 15009 . . . 4 (𝐴 ∈ ℝ → (exp‘(𝐴 / 2)) ∈ ℝ)
43sqge0d 13222 . . 3 (𝐴 ∈ ℝ → 0 ≤ ((exp‘(𝐴 / 2))↑2))
52recnd 10252 . . . . 5 (𝐴 ∈ ℝ → (𝐴 / 2) ∈ ℂ)
6 2z 11593 . . . . 5 2 ∈ ℤ
7 efexp 15022 . . . . 5 (((𝐴 / 2) ∈ ℂ ∧ 2 ∈ ℤ) → (exp‘(2 · (𝐴 / 2))) = ((exp‘(𝐴 / 2))↑2))
85, 6, 7sylancl 697 . . . 4 (𝐴 ∈ ℝ → (exp‘(2 · (𝐴 / 2))) = ((exp‘(𝐴 / 2))↑2))
9 recn 10210 . . . . . 6 (𝐴 ∈ ℝ → 𝐴 ∈ ℂ)
10 2cn 11275 . . . . . . 7 2 ∈ ℂ
11 2ne0 11297 . . . . . . 7 2 ≠ 0
12 divcan2 10877 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 2 ∈ ℂ ∧ 2 ≠ 0) → (2 · (𝐴 / 2)) = 𝐴)
1310, 11, 12mp3an23 1557 . . . . . 6 (𝐴 ∈ ℂ → (2 · (𝐴 / 2)) = 𝐴)
149, 13syl 17 . . . . 5 (𝐴 ∈ ℝ → (2 · (𝐴 / 2)) = 𝐴)
1514fveq2d 6348 . . . 4 (𝐴 ∈ ℝ → (exp‘(2 · (𝐴 / 2))) = (exp‘𝐴))
168, 15eqtr3d 2788 . . 3 (𝐴 ∈ ℝ → ((exp‘(𝐴 / 2))↑2) = (exp‘𝐴))
174, 16breqtrd 4822 . 2 (𝐴 ∈ ℝ → 0 ≤ (exp‘𝐴))
18 efne0 15018 . . 3 (𝐴 ∈ ℂ → (exp‘𝐴) ≠ 0)
199, 18syl 17 . 2 (𝐴 ∈ ℝ → (exp‘𝐴) ≠ 0)
201, 17, 19ne0gt0d 10358 1 (𝐴 ∈ ℝ → 0 < (exp‘𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1624  wcel 2131  wne 2924   class class class wbr 4796  cfv 6041  (class class class)co 6805  cc 10118  cr 10119  0cc0 10120   · cmul 10125   < clt 10258  cle 10259   / cdiv 10868  2c2 11254  cz 11561  cexp 13046  expce 14983
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1863  ax-4 1878  ax-5 1980  ax-6 2046  ax-7 2082  ax-8 2133  ax-9 2140  ax-10 2160  ax-11 2175  ax-12 2188  ax-13 2383  ax-ext 2732  ax-rep 4915  ax-sep 4925  ax-nul 4933  ax-pow 4984  ax-pr 5047  ax-un 7106  ax-inf2 8703  ax-cnex 10176  ax-resscn 10177  ax-1cn 10178  ax-icn 10179  ax-addcl 10180  ax-addrcl 10181  ax-mulcl 10182  ax-mulrcl 10183  ax-mulcom 10184  ax-addass 10185  ax-mulass 10186  ax-distr 10187  ax-i2m1 10188  ax-1ne0 10189  ax-1rid 10190  ax-rnegex 10191  ax-rrecex 10192  ax-cnre 10193  ax-pre-lttri 10194  ax-pre-lttrn 10195  ax-pre-ltadd 10196  ax-pre-mulgt0 10197  ax-pre-sup 10198  ax-addf 10199  ax-mulf 10200
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1627  df-fal 1630  df-ex 1846  df-nf 1851  df-sb 2039  df-eu 2603  df-mo 2604  df-clab 2739  df-cleq 2745  df-clel 2748  df-nfc 2883  df-ne 2925  df-nel 3028  df-ral 3047  df-rex 3048  df-reu 3049  df-rmo 3050  df-rab 3051  df-v 3334  df-sbc 3569  df-csb 3667  df-dif 3710  df-un 3712  df-in 3714  df-ss 3721  df-pss 3723  df-nul 4051  df-if 4223  df-pw 4296  df-sn 4314  df-pr 4316  df-tp 4318  df-op 4320  df-uni 4581  df-int 4620  df-iun 4666  df-br 4797  df-opab 4857  df-mpt 4874  df-tr 4897  df-id 5166  df-eprel 5171  df-po 5179  df-so 5180  df-fr 5217  df-se 5218  df-we 5219  df-xp 5264  df-rel 5265  df-cnv 5266  df-co 5267  df-dm 5268  df-rn 5269  df-res 5270  df-ima 5271  df-pred 5833  df-ord 5879  df-on 5880  df-lim 5881  df-suc 5882  df-iota 6004  df-fun 6043  df-fn 6044  df-f 6045  df-f1 6046  df-fo 6047  df-f1o 6048  df-fv 6049  df-isom 6050  df-riota 6766  df-ov 6808  df-oprab 6809  df-mpt2 6810  df-om 7223  df-1st 7325  df-2nd 7326  df-wrecs 7568  df-recs 7629  df-rdg 7667  df-1o 7721  df-oadd 7725  df-er 7903  df-pm 8018  df-en 8114  df-dom 8115  df-sdom 8116  df-fin 8117  df-sup 8505  df-inf 8506  df-oi 8572  df-card 8947  df-pnf 10260  df-mnf 10261  df-xr 10262  df-ltxr 10263  df-le 10264  df-sub 10452  df-neg 10453  df-div 10869  df-nn 11205  df-2 11263  df-3 11264  df-n0 11477  df-z 11562  df-uz 11872  df-rp 12018  df-ico 12366  df-fz 12512  df-fzo 12652  df-fl 12779  df-seq 12988  df-exp 13047  df-fac 13247  df-bc 13276  df-hash 13304  df-shft 13998  df-cj 14030  df-re 14031  df-im 14032  df-sqrt 14166  df-abs 14167  df-limsup 14393  df-clim 14410  df-rlim 14411  df-sum 14608  df-ef 14989
This theorem is referenced by:  rpefcl  15025  eflt  15038  tanhlt1  15081  absef  15118  efieq1re  15120  rpcxpcl  24613  asinsinlem  24809  birthdaylem3  24871  pntpbnd1  25466  pntpbnd2  25467  xrge0iifcnv  30280
  Copyright terms: Public domain W3C validator