MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  efgsf Structured version   Visualization version   GIF version

Theorem efgsf 18348
Description: Value of the auxiliary function 𝑆 defining a sequence of extensions starting at some irreducible word. (Contributed by Mario Carneiro, 1-Oct-2015.)
Hypotheses
Ref Expression
efgval.w 𝑊 = ( I ‘Word (𝐼 × 2𝑜))
efgval.r = ( ~FG𝐼)
efgval2.m 𝑀 = (𝑦𝐼, 𝑧 ∈ 2𝑜 ↦ ⟨𝑦, (1𝑜𝑧)⟩)
efgval2.t 𝑇 = (𝑣𝑊 ↦ (𝑛 ∈ (0...(♯‘𝑣)), 𝑤 ∈ (𝐼 × 2𝑜) ↦ (𝑣 splice ⟨𝑛, 𝑛, ⟨“𝑤(𝑀𝑤)”⟩⟩)))
efgred.d 𝐷 = (𝑊 𝑥𝑊 ran (𝑇𝑥))
efgred.s 𝑆 = (𝑚 ∈ {𝑡 ∈ (Word 𝑊 ∖ {∅}) ∣ ((𝑡‘0) ∈ 𝐷 ∧ ∀𝑘 ∈ (1..^(♯‘𝑡))(𝑡𝑘) ∈ ran (𝑇‘(𝑡‘(𝑘 − 1))))} ↦ (𝑚‘((♯‘𝑚) − 1)))
Assertion
Ref Expression
efgsf 𝑆:{𝑡 ∈ (Word 𝑊 ∖ {∅}) ∣ ((𝑡‘0) ∈ 𝐷 ∧ ∀𝑘 ∈ (1..^(♯‘𝑡))(𝑡𝑘) ∈ ran (𝑇‘(𝑡‘(𝑘 − 1))))}⟶𝑊
Distinct variable groups:   𝑦,𝑧   𝑡,𝑛,𝑣,𝑤,𝑦,𝑧,𝑚,𝑥   𝑚,𝑀   𝑥,𝑛,𝑀,𝑡,𝑣,𝑤   𝑘,𝑚,𝑡,𝑥,𝑇   𝑘,𝑛,𝑣,𝑤,𝑦,𝑧,𝑊,𝑚,𝑡,𝑥   ,𝑚,𝑡,𝑥,𝑦,𝑧   𝑚,𝐼,𝑛,𝑡,𝑣,𝑤,𝑥,𝑦,𝑧   𝐷,𝑚,𝑡
Allowed substitution hints:   𝐷(𝑥,𝑦,𝑧,𝑤,𝑣,𝑘,𝑛)   (𝑤,𝑣,𝑘,𝑛)   𝑆(𝑥,𝑦,𝑧,𝑤,𝑣,𝑡,𝑘,𝑚,𝑛)   𝑇(𝑦,𝑧,𝑤,𝑣,𝑛)   𝐼(𝑘)   𝑀(𝑦,𝑧,𝑘)

Proof of Theorem efgsf
StepHypRef Expression
1 id 22 . . . . . 6 (𝑚 = 𝑡𝑚 = 𝑡)
2 fveq2 6332 . . . . . . 7 (𝑚 = 𝑡 → (♯‘𝑚) = (♯‘𝑡))
32oveq1d 6807 . . . . . 6 (𝑚 = 𝑡 → ((♯‘𝑚) − 1) = ((♯‘𝑡) − 1))
41, 3fveq12d 6338 . . . . 5 (𝑚 = 𝑡 → (𝑚‘((♯‘𝑚) − 1)) = (𝑡‘((♯‘𝑡) − 1)))
54eleq1d 2834 . . . 4 (𝑚 = 𝑡 → ((𝑚‘((♯‘𝑚) − 1)) ∈ 𝑊 ↔ (𝑡‘((♯‘𝑡) − 1)) ∈ 𝑊))
65ralrab2 3522 . . 3 (∀𝑚 ∈ {𝑡 ∈ (Word 𝑊 ∖ {∅}) ∣ ((𝑡‘0) ∈ 𝐷 ∧ ∀𝑘 ∈ (1..^(♯‘𝑡))(𝑡𝑘) ∈ ran (𝑇‘(𝑡‘(𝑘 − 1))))} (𝑚‘((♯‘𝑚) − 1)) ∈ 𝑊 ↔ ∀𝑡 ∈ (Word 𝑊 ∖ {∅})(((𝑡‘0) ∈ 𝐷 ∧ ∀𝑘 ∈ (1..^(♯‘𝑡))(𝑡𝑘) ∈ ran (𝑇‘(𝑡‘(𝑘 − 1)))) → (𝑡‘((♯‘𝑡) − 1)) ∈ 𝑊))
7 eldifi 3881 . . . . . 6 (𝑡 ∈ (Word 𝑊 ∖ {∅}) → 𝑡 ∈ Word 𝑊)
8 wrdf 13505 . . . . . 6 (𝑡 ∈ Word 𝑊𝑡:(0..^(♯‘𝑡))⟶𝑊)
97, 8syl 17 . . . . 5 (𝑡 ∈ (Word 𝑊 ∖ {∅}) → 𝑡:(0..^(♯‘𝑡))⟶𝑊)
10 eldifsn 4451 . . . . . . 7 (𝑡 ∈ (Word 𝑊 ∖ {∅}) ↔ (𝑡 ∈ Word 𝑊𝑡 ≠ ∅))
11 lennncl 13520 . . . . . . 7 ((𝑡 ∈ Word 𝑊𝑡 ≠ ∅) → (♯‘𝑡) ∈ ℕ)
1210, 11sylbi 207 . . . . . 6 (𝑡 ∈ (Word 𝑊 ∖ {∅}) → (♯‘𝑡) ∈ ℕ)
13 fzo0end 12767 . . . . . 6 ((♯‘𝑡) ∈ ℕ → ((♯‘𝑡) − 1) ∈ (0..^(♯‘𝑡)))
1412, 13syl 17 . . . . 5 (𝑡 ∈ (Word 𝑊 ∖ {∅}) → ((♯‘𝑡) − 1) ∈ (0..^(♯‘𝑡)))
159, 14ffvelrnd 6503 . . . 4 (𝑡 ∈ (Word 𝑊 ∖ {∅}) → (𝑡‘((♯‘𝑡) − 1)) ∈ 𝑊)
1615a1d 25 . . 3 (𝑡 ∈ (Word 𝑊 ∖ {∅}) → (((𝑡‘0) ∈ 𝐷 ∧ ∀𝑘 ∈ (1..^(♯‘𝑡))(𝑡𝑘) ∈ ran (𝑇‘(𝑡‘(𝑘 − 1)))) → (𝑡‘((♯‘𝑡) − 1)) ∈ 𝑊))
176, 16mprgbir 3075 . 2 𝑚 ∈ {𝑡 ∈ (Word 𝑊 ∖ {∅}) ∣ ((𝑡‘0) ∈ 𝐷 ∧ ∀𝑘 ∈ (1..^(♯‘𝑡))(𝑡𝑘) ∈ ran (𝑇‘(𝑡‘(𝑘 − 1))))} (𝑚‘((♯‘𝑚) − 1)) ∈ 𝑊
18 efgred.s . . 3 𝑆 = (𝑚 ∈ {𝑡 ∈ (Word 𝑊 ∖ {∅}) ∣ ((𝑡‘0) ∈ 𝐷 ∧ ∀𝑘 ∈ (1..^(♯‘𝑡))(𝑡𝑘) ∈ ran (𝑇‘(𝑡‘(𝑘 − 1))))} ↦ (𝑚‘((♯‘𝑚) − 1)))
1918fmpt 6523 . 2 (∀𝑚 ∈ {𝑡 ∈ (Word 𝑊 ∖ {∅}) ∣ ((𝑡‘0) ∈ 𝐷 ∧ ∀𝑘 ∈ (1..^(♯‘𝑡))(𝑡𝑘) ∈ ran (𝑇‘(𝑡‘(𝑘 − 1))))} (𝑚‘((♯‘𝑚) − 1)) ∈ 𝑊𝑆:{𝑡 ∈ (Word 𝑊 ∖ {∅}) ∣ ((𝑡‘0) ∈ 𝐷 ∧ ∀𝑘 ∈ (1..^(♯‘𝑡))(𝑡𝑘) ∈ ran (𝑇‘(𝑡‘(𝑘 − 1))))}⟶𝑊)
2017, 19mpbi 220 1 𝑆:{𝑡 ∈ (Word 𝑊 ∖ {∅}) ∣ ((𝑡‘0) ∈ 𝐷 ∧ ∀𝑘 ∈ (1..^(♯‘𝑡))(𝑡𝑘) ∈ ran (𝑇‘(𝑡‘(𝑘 − 1))))}⟶𝑊
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 382   = wceq 1630  wcel 2144  wne 2942  wral 3060  {crab 3064  cdif 3718  c0 4061  {csn 4314  cop 4320  cotp 4322   ciun 4652  cmpt 4861   I cid 5156   × cxp 5247  ran crn 5250  wf 6027  cfv 6031  (class class class)co 6792  cmpt2 6794  1𝑜c1o 7705  2𝑜c2o 7706  0cc0 10137  1c1 10138  cmin 10467  cn 11221  ...cfz 12532  ..^cfzo 12672  chash 13320  Word cword 13486   splice csplice 13491  ⟨“cs2 13794   ~FG cefg 18325
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1869  ax-4 1884  ax-5 1990  ax-6 2056  ax-7 2092  ax-8 2146  ax-9 2153  ax-10 2173  ax-11 2189  ax-12 2202  ax-13 2407  ax-ext 2750  ax-rep 4902  ax-sep 4912  ax-nul 4920  ax-pow 4971  ax-pr 5034  ax-un 7095  ax-cnex 10193  ax-resscn 10194  ax-1cn 10195  ax-icn 10196  ax-addcl 10197  ax-addrcl 10198  ax-mulcl 10199  ax-mulrcl 10200  ax-mulcom 10201  ax-addass 10202  ax-mulass 10203  ax-distr 10204  ax-i2m1 10205  ax-1ne0 10206  ax-1rid 10207  ax-rnegex 10208  ax-rrecex 10209  ax-cnre 10210  ax-pre-lttri 10211  ax-pre-lttrn 10212  ax-pre-ltadd 10213  ax-pre-mulgt0 10214
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 827  df-3or 1071  df-3an 1072  df-tru 1633  df-ex 1852  df-nf 1857  df-sb 2049  df-eu 2621  df-mo 2622  df-clab 2757  df-cleq 2763  df-clel 2766  df-nfc 2901  df-ne 2943  df-nel 3046  df-ral 3065  df-rex 3066  df-reu 3067  df-rab 3069  df-v 3351  df-sbc 3586  df-csb 3681  df-dif 3724  df-un 3726  df-in 3728  df-ss 3735  df-pss 3737  df-nul 4062  df-if 4224  df-pw 4297  df-sn 4315  df-pr 4317  df-tp 4319  df-op 4321  df-uni 4573  df-int 4610  df-iun 4654  df-br 4785  df-opab 4845  df-mpt 4862  df-tr 4885  df-id 5157  df-eprel 5162  df-po 5170  df-so 5171  df-fr 5208  df-we 5210  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-pred 5823  df-ord 5869  df-on 5870  df-lim 5871  df-suc 5872  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039  df-riota 6753  df-ov 6795  df-oprab 6796  df-mpt2 6797  df-om 7212  df-1st 7314  df-2nd 7315  df-wrecs 7558  df-recs 7620  df-rdg 7658  df-1o 7712  df-oadd 7716  df-er 7895  df-en 8109  df-dom 8110  df-sdom 8111  df-fin 8112  df-card 8964  df-pnf 10277  df-mnf 10278  df-xr 10279  df-ltxr 10280  df-le 10281  df-sub 10469  df-neg 10470  df-nn 11222  df-n0 11494  df-z 11579  df-uz 11888  df-fz 12533  df-fzo 12673  df-hash 13321  df-word 13494
This theorem is referenced by:  efgsdm  18349  efgsval  18350  efgsp1  18356  efgsfo  18358  efgredleme  18362  efgred  18367
  Copyright terms: Public domain W3C validator