MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  efgsdmi Structured version   Visualization version   GIF version

Theorem efgsdmi 18352
Description: Property of the last link in the chain of extensions. (Contributed by Mario Carneiro, 29-Sep-2015.)
Hypotheses
Ref Expression
efgval.w 𝑊 = ( I ‘Word (𝐼 × 2𝑜))
efgval.r = ( ~FG𝐼)
efgval2.m 𝑀 = (𝑦𝐼, 𝑧 ∈ 2𝑜 ↦ ⟨𝑦, (1𝑜𝑧)⟩)
efgval2.t 𝑇 = (𝑣𝑊 ↦ (𝑛 ∈ (0...(♯‘𝑣)), 𝑤 ∈ (𝐼 × 2𝑜) ↦ (𝑣 splice ⟨𝑛, 𝑛, ⟨“𝑤(𝑀𝑤)”⟩⟩)))
efgred.d 𝐷 = (𝑊 𝑥𝑊 ran (𝑇𝑥))
efgred.s 𝑆 = (𝑚 ∈ {𝑡 ∈ (Word 𝑊 ∖ {∅}) ∣ ((𝑡‘0) ∈ 𝐷 ∧ ∀𝑘 ∈ (1..^(♯‘𝑡))(𝑡𝑘) ∈ ran (𝑇‘(𝑡‘(𝑘 − 1))))} ↦ (𝑚‘((♯‘𝑚) − 1)))
Assertion
Ref Expression
efgsdmi ((𝐹 ∈ dom 𝑆 ∧ ((♯‘𝐹) − 1) ∈ ℕ) → (𝑆𝐹) ∈ ran (𝑇‘(𝐹‘(((♯‘𝐹) − 1) − 1))))
Distinct variable groups:   𝑦,𝑧   𝑡,𝑛,𝑣,𝑤,𝑦,𝑧,𝑚,𝑥   𝑚,𝑀   𝑥,𝑛,𝑀,𝑡,𝑣,𝑤   𝑘,𝑚,𝑡,𝑥,𝑇   𝑘,𝑛,𝑣,𝑤,𝑦,𝑧,𝑊,𝑚,𝑡,𝑥   ,𝑚,𝑡,𝑥,𝑦,𝑧   𝑚,𝐼,𝑛,𝑡,𝑣,𝑤,𝑥,𝑦,𝑧   𝐷,𝑚,𝑡
Allowed substitution hints:   𝐷(𝑥,𝑦,𝑧,𝑤,𝑣,𝑘,𝑛)   (𝑤,𝑣,𝑘,𝑛)   𝑆(𝑥,𝑦,𝑧,𝑤,𝑣,𝑡,𝑘,𝑚,𝑛)   𝑇(𝑦,𝑧,𝑤,𝑣,𝑛)   𝐹(𝑥,𝑦,𝑧,𝑤,𝑣,𝑡,𝑘,𝑚,𝑛)   𝐼(𝑘)   𝑀(𝑦,𝑧,𝑘)

Proof of Theorem efgsdmi
Dummy variable 𝑖 is distinct from all other variables.
StepHypRef Expression
1 efgval.w . . . 4 𝑊 = ( I ‘Word (𝐼 × 2𝑜))
2 efgval.r . . . 4 = ( ~FG𝐼)
3 efgval2.m . . . 4 𝑀 = (𝑦𝐼, 𝑧 ∈ 2𝑜 ↦ ⟨𝑦, (1𝑜𝑧)⟩)
4 efgval2.t . . . 4 𝑇 = (𝑣𝑊 ↦ (𝑛 ∈ (0...(♯‘𝑣)), 𝑤 ∈ (𝐼 × 2𝑜) ↦ (𝑣 splice ⟨𝑛, 𝑛, ⟨“𝑤(𝑀𝑤)”⟩⟩)))
5 efgred.d . . . 4 𝐷 = (𝑊 𝑥𝑊 ran (𝑇𝑥))
6 efgred.s . . . 4 𝑆 = (𝑚 ∈ {𝑡 ∈ (Word 𝑊 ∖ {∅}) ∣ ((𝑡‘0) ∈ 𝐷 ∧ ∀𝑘 ∈ (1..^(♯‘𝑡))(𝑡𝑘) ∈ ran (𝑇‘(𝑡‘(𝑘 − 1))))} ↦ (𝑚‘((♯‘𝑚) − 1)))
71, 2, 3, 4, 5, 6efgsval 18351 . . 3 (𝐹 ∈ dom 𝑆 → (𝑆𝐹) = (𝐹‘((♯‘𝐹) − 1)))
87adantr 466 . 2 ((𝐹 ∈ dom 𝑆 ∧ ((♯‘𝐹) − 1) ∈ ℕ) → (𝑆𝐹) = (𝐹‘((♯‘𝐹) − 1)))
9 fveq2 6333 . . . 4 (𝑖 = ((♯‘𝐹) − 1) → (𝐹𝑖) = (𝐹‘((♯‘𝐹) − 1)))
10 fvoveq1 6819 . . . . . 6 (𝑖 = ((♯‘𝐹) − 1) → (𝐹‘(𝑖 − 1)) = (𝐹‘(((♯‘𝐹) − 1) − 1)))
1110fveq2d 6337 . . . . 5 (𝑖 = ((♯‘𝐹) − 1) → (𝑇‘(𝐹‘(𝑖 − 1))) = (𝑇‘(𝐹‘(((♯‘𝐹) − 1) − 1))))
1211rneqd 5490 . . . 4 (𝑖 = ((♯‘𝐹) − 1) → ran (𝑇‘(𝐹‘(𝑖 − 1))) = ran (𝑇‘(𝐹‘(((♯‘𝐹) − 1) − 1))))
139, 12eleq12d 2844 . . 3 (𝑖 = ((♯‘𝐹) − 1) → ((𝐹𝑖) ∈ ran (𝑇‘(𝐹‘(𝑖 − 1))) ↔ (𝐹‘((♯‘𝐹) − 1)) ∈ ran (𝑇‘(𝐹‘(((♯‘𝐹) − 1) − 1)))))
141, 2, 3, 4, 5, 6efgsdm 18350 . . . . 5 (𝐹 ∈ dom 𝑆 ↔ (𝐹 ∈ (Word 𝑊 ∖ {∅}) ∧ (𝐹‘0) ∈ 𝐷 ∧ ∀𝑖 ∈ (1..^(♯‘𝐹))(𝐹𝑖) ∈ ran (𝑇‘(𝐹‘(𝑖 − 1)))))
1514simp3bi 1141 . . . 4 (𝐹 ∈ dom 𝑆 → ∀𝑖 ∈ (1..^(♯‘𝐹))(𝐹𝑖) ∈ ran (𝑇‘(𝐹‘(𝑖 − 1))))
1615adantr 466 . . 3 ((𝐹 ∈ dom 𝑆 ∧ ((♯‘𝐹) − 1) ∈ ℕ) → ∀𝑖 ∈ (1..^(♯‘𝐹))(𝐹𝑖) ∈ ran (𝑇‘(𝐹‘(𝑖 − 1))))
17 simpr 471 . . . . . . 7 ((𝐹 ∈ dom 𝑆 ∧ ((♯‘𝐹) − 1) ∈ ℕ) → ((♯‘𝐹) − 1) ∈ ℕ)
18 nnuz 11930 . . . . . . 7 ℕ = (ℤ‘1)
1917, 18syl6eleq 2860 . . . . . 6 ((𝐹 ∈ dom 𝑆 ∧ ((♯‘𝐹) − 1) ∈ ℕ) → ((♯‘𝐹) − 1) ∈ (ℤ‘1))
20 eluzfz1 12555 . . . . . 6 (((♯‘𝐹) − 1) ∈ (ℤ‘1) → 1 ∈ (1...((♯‘𝐹) − 1)))
2119, 20syl 17 . . . . 5 ((𝐹 ∈ dom 𝑆 ∧ ((♯‘𝐹) − 1) ∈ ℕ) → 1 ∈ (1...((♯‘𝐹) − 1)))
2214simp1bi 1139 . . . . . . . 8 (𝐹 ∈ dom 𝑆𝐹 ∈ (Word 𝑊 ∖ {∅}))
2322adantr 466 . . . . . . 7 ((𝐹 ∈ dom 𝑆 ∧ ((♯‘𝐹) − 1) ∈ ℕ) → 𝐹 ∈ (Word 𝑊 ∖ {∅}))
2423eldifad 3735 . . . . . 6 ((𝐹 ∈ dom 𝑆 ∧ ((♯‘𝐹) − 1) ∈ ℕ) → 𝐹 ∈ Word 𝑊)
25 lencl 13520 . . . . . 6 (𝐹 ∈ Word 𝑊 → (♯‘𝐹) ∈ ℕ0)
26 nn0z 11607 . . . . . 6 ((♯‘𝐹) ∈ ℕ0 → (♯‘𝐹) ∈ ℤ)
27 fzoval 12679 . . . . . 6 ((♯‘𝐹) ∈ ℤ → (1..^(♯‘𝐹)) = (1...((♯‘𝐹) − 1)))
2824, 25, 26, 274syl 19 . . . . 5 ((𝐹 ∈ dom 𝑆 ∧ ((♯‘𝐹) − 1) ∈ ℕ) → (1..^(♯‘𝐹)) = (1...((♯‘𝐹) − 1)))
2921, 28eleqtrrd 2853 . . . 4 ((𝐹 ∈ dom 𝑆 ∧ ((♯‘𝐹) − 1) ∈ ℕ) → 1 ∈ (1..^(♯‘𝐹)))
30 fzoend 12767 . . . 4 (1 ∈ (1..^(♯‘𝐹)) → ((♯‘𝐹) − 1) ∈ (1..^(♯‘𝐹)))
3129, 30syl 17 . . 3 ((𝐹 ∈ dom 𝑆 ∧ ((♯‘𝐹) − 1) ∈ ℕ) → ((♯‘𝐹) − 1) ∈ (1..^(♯‘𝐹)))
3213, 16, 31rspcdva 3466 . 2 ((𝐹 ∈ dom 𝑆 ∧ ((♯‘𝐹) − 1) ∈ ℕ) → (𝐹‘((♯‘𝐹) − 1)) ∈ ran (𝑇‘(𝐹‘(((♯‘𝐹) − 1) − 1))))
338, 32eqeltrd 2850 1 ((𝐹 ∈ dom 𝑆 ∧ ((♯‘𝐹) − 1) ∈ ℕ) → (𝑆𝐹) ∈ ran (𝑇‘(𝐹‘(((♯‘𝐹) − 1) − 1))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 382   = wceq 1631  wcel 2145  wral 3061  {crab 3065  cdif 3720  c0 4063  {csn 4317  cop 4323  cotp 4325   ciun 4655  cmpt 4864   I cid 5157   × cxp 5248  dom cdm 5250  ran crn 5251  cfv 6030  (class class class)co 6796  cmpt2 6798  1𝑜c1o 7710  2𝑜c2o 7711  0cc0 10142  1c1 10143  cmin 10472  cn 11226  0cn0 11499  cz 11584  cuz 11893  ...cfz 12533  ..^cfzo 12673  chash 13321  Word cword 13487   splice csplice 13492  ⟨“cs2 13795   ~FG cefg 18326
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-rep 4905  ax-sep 4916  ax-nul 4924  ax-pow 4975  ax-pr 5035  ax-un 7100  ax-cnex 10198  ax-resscn 10199  ax-1cn 10200  ax-icn 10201  ax-addcl 10202  ax-addrcl 10203  ax-mulcl 10204  ax-mulrcl 10205  ax-mulcom 10206  ax-addass 10207  ax-mulass 10208  ax-distr 10209  ax-i2m1 10210  ax-1ne0 10211  ax-1rid 10212  ax-rnegex 10213  ax-rrecex 10214  ax-cnre 10215  ax-pre-lttri 10216  ax-pre-lttrn 10217  ax-pre-ltadd 10218  ax-pre-mulgt0 10219
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3or 1072  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-pss 3739  df-nul 4064  df-if 4227  df-pw 4300  df-sn 4318  df-pr 4320  df-tp 4322  df-op 4324  df-uni 4576  df-int 4613  df-iun 4657  df-br 4788  df-opab 4848  df-mpt 4865  df-tr 4888  df-id 5158  df-eprel 5163  df-po 5171  df-so 5172  df-fr 5209  df-we 5211  df-xp 5256  df-rel 5257  df-cnv 5258  df-co 5259  df-dm 5260  df-rn 5261  df-res 5262  df-ima 5263  df-pred 5822  df-ord 5868  df-on 5869  df-lim 5870  df-suc 5871  df-iota 5993  df-fun 6032  df-fn 6033  df-f 6034  df-f1 6035  df-fo 6036  df-f1o 6037  df-fv 6038  df-riota 6757  df-ov 6799  df-oprab 6800  df-mpt2 6801  df-om 7217  df-1st 7319  df-2nd 7320  df-wrecs 7563  df-recs 7625  df-rdg 7663  df-1o 7717  df-oadd 7721  df-er 7900  df-en 8114  df-dom 8115  df-sdom 8116  df-fin 8117  df-card 8969  df-pnf 10282  df-mnf 10283  df-xr 10284  df-ltxr 10285  df-le 10286  df-sub 10474  df-neg 10475  df-nn 11227  df-n0 11500  df-z 11585  df-uz 11894  df-fz 12534  df-fzo 12674  df-hash 13322  df-word 13495
This theorem is referenced by:  efgs1b  18356  efgredlemg  18362  efgredlemd  18364  efgredlem  18367
  Copyright terms: Public domain W3C validator