![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > efgs1 | Structured version Visualization version GIF version |
Description: A singleton of an irreducible word is an extension sequence. (Contributed by Mario Carneiro, 27-Sep-2015.) |
Ref | Expression |
---|---|
efgval.w | ⊢ 𝑊 = ( I ‘Word (𝐼 × 2𝑜)) |
efgval.r | ⊢ ∼ = ( ~FG ‘𝐼) |
efgval2.m | ⊢ 𝑀 = (𝑦 ∈ 𝐼, 𝑧 ∈ 2𝑜 ↦ 〈𝑦, (1𝑜 ∖ 𝑧)〉) |
efgval2.t | ⊢ 𝑇 = (𝑣 ∈ 𝑊 ↦ (𝑛 ∈ (0...(#‘𝑣)), 𝑤 ∈ (𝐼 × 2𝑜) ↦ (𝑣 splice 〈𝑛, 𝑛, 〈“𝑤(𝑀‘𝑤)”〉〉))) |
efgred.d | ⊢ 𝐷 = (𝑊 ∖ ∪ 𝑥 ∈ 𝑊 ran (𝑇‘𝑥)) |
efgred.s | ⊢ 𝑆 = (𝑚 ∈ {𝑡 ∈ (Word 𝑊 ∖ {∅}) ∣ ((𝑡‘0) ∈ 𝐷 ∧ ∀𝑘 ∈ (1..^(#‘𝑡))(𝑡‘𝑘) ∈ ran (𝑇‘(𝑡‘(𝑘 − 1))))} ↦ (𝑚‘((#‘𝑚) − 1))) |
Ref | Expression |
---|---|
efgs1 | ⊢ (𝐴 ∈ 𝐷 → 〈“𝐴”〉 ∈ dom 𝑆) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eldifi 3765 | . . . . 5 ⊢ (𝐴 ∈ (𝑊 ∖ ∪ 𝑥 ∈ 𝑊 ran (𝑇‘𝑥)) → 𝐴 ∈ 𝑊) | |
2 | efgred.d | . . . . 5 ⊢ 𝐷 = (𝑊 ∖ ∪ 𝑥 ∈ 𝑊 ran (𝑇‘𝑥)) | |
3 | 1, 2 | eleq2s 2748 | . . . 4 ⊢ (𝐴 ∈ 𝐷 → 𝐴 ∈ 𝑊) |
4 | 3 | s1cld 13419 | . . 3 ⊢ (𝐴 ∈ 𝐷 → 〈“𝐴”〉 ∈ Word 𝑊) |
5 | s1nz 13423 | . . . 4 ⊢ 〈“𝐴”〉 ≠ ∅ | |
6 | eldifsn 4350 | . . . 4 ⊢ (〈“𝐴”〉 ∈ (Word 𝑊 ∖ {∅}) ↔ (〈“𝐴”〉 ∈ Word 𝑊 ∧ 〈“𝐴”〉 ≠ ∅)) | |
7 | 5, 6 | mpbiran2 974 | . . 3 ⊢ (〈“𝐴”〉 ∈ (Word 𝑊 ∖ {∅}) ↔ 〈“𝐴”〉 ∈ Word 𝑊) |
8 | 4, 7 | sylibr 224 | . 2 ⊢ (𝐴 ∈ 𝐷 → 〈“𝐴”〉 ∈ (Word 𝑊 ∖ {∅})) |
9 | s1fv 13427 | . . 3 ⊢ (𝐴 ∈ 𝐷 → (〈“𝐴”〉‘0) = 𝐴) | |
10 | id 22 | . . 3 ⊢ (𝐴 ∈ 𝐷 → 𝐴 ∈ 𝐷) | |
11 | 9, 10 | eqeltrd 2730 | . 2 ⊢ (𝐴 ∈ 𝐷 → (〈“𝐴”〉‘0) ∈ 𝐷) |
12 | s1len 13422 | . . . . . 6 ⊢ (#‘〈“𝐴”〉) = 1 | |
13 | 12 | a1i 11 | . . . . 5 ⊢ (𝐴 ∈ 𝐷 → (#‘〈“𝐴”〉) = 1) |
14 | 13 | oveq2d 6706 | . . . 4 ⊢ (𝐴 ∈ 𝐷 → (1..^(#‘〈“𝐴”〉)) = (1..^1)) |
15 | fzo0 12531 | . . . 4 ⊢ (1..^1) = ∅ | |
16 | 14, 15 | syl6eq 2701 | . . 3 ⊢ (𝐴 ∈ 𝐷 → (1..^(#‘〈“𝐴”〉)) = ∅) |
17 | rzal 4106 | . . 3 ⊢ ((1..^(#‘〈“𝐴”〉)) = ∅ → ∀𝑖 ∈ (1..^(#‘〈“𝐴”〉))(〈“𝐴”〉‘𝑖) ∈ ran (𝑇‘(〈“𝐴”〉‘(𝑖 − 1)))) | |
18 | 16, 17 | syl 17 | . 2 ⊢ (𝐴 ∈ 𝐷 → ∀𝑖 ∈ (1..^(#‘〈“𝐴”〉))(〈“𝐴”〉‘𝑖) ∈ ran (𝑇‘(〈“𝐴”〉‘(𝑖 − 1)))) |
19 | efgval.w | . . 3 ⊢ 𝑊 = ( I ‘Word (𝐼 × 2𝑜)) | |
20 | efgval.r | . . 3 ⊢ ∼ = ( ~FG ‘𝐼) | |
21 | efgval2.m | . . 3 ⊢ 𝑀 = (𝑦 ∈ 𝐼, 𝑧 ∈ 2𝑜 ↦ 〈𝑦, (1𝑜 ∖ 𝑧)〉) | |
22 | efgval2.t | . . 3 ⊢ 𝑇 = (𝑣 ∈ 𝑊 ↦ (𝑛 ∈ (0...(#‘𝑣)), 𝑤 ∈ (𝐼 × 2𝑜) ↦ (𝑣 splice 〈𝑛, 𝑛, 〈“𝑤(𝑀‘𝑤)”〉〉))) | |
23 | efgred.s | . . 3 ⊢ 𝑆 = (𝑚 ∈ {𝑡 ∈ (Word 𝑊 ∖ {∅}) ∣ ((𝑡‘0) ∈ 𝐷 ∧ ∀𝑘 ∈ (1..^(#‘𝑡))(𝑡‘𝑘) ∈ ran (𝑇‘(𝑡‘(𝑘 − 1))))} ↦ (𝑚‘((#‘𝑚) − 1))) | |
24 | 19, 20, 21, 22, 2, 23 | efgsdm 18189 | . 2 ⊢ (〈“𝐴”〉 ∈ dom 𝑆 ↔ (〈“𝐴”〉 ∈ (Word 𝑊 ∖ {∅}) ∧ (〈“𝐴”〉‘0) ∈ 𝐷 ∧ ∀𝑖 ∈ (1..^(#‘〈“𝐴”〉))(〈“𝐴”〉‘𝑖) ∈ ran (𝑇‘(〈“𝐴”〉‘(𝑖 − 1))))) |
25 | 8, 11, 18, 24 | syl3anbrc 1265 | 1 ⊢ (𝐴 ∈ 𝐷 → 〈“𝐴”〉 ∈ dom 𝑆) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 = wceq 1523 ∈ wcel 2030 ≠ wne 2823 ∀wral 2941 {crab 2945 ∖ cdif 3604 ∅c0 3948 {csn 4210 〈cop 4216 〈cotp 4218 ∪ ciun 4552 ↦ cmpt 4762 I cid 5052 × cxp 5141 dom cdm 5143 ran crn 5144 ‘cfv 5926 (class class class)co 6690 ↦ cmpt2 6692 1𝑜c1o 7598 2𝑜c2o 7599 0cc0 9974 1c1 9975 − cmin 10304 ...cfz 12364 ..^cfzo 12504 #chash 13157 Word cword 13323 〈“cs1 13326 splice csplice 13328 〈“cs2 13632 ~FG cefg 18165 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-8 2032 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-rep 4804 ax-sep 4814 ax-nul 4822 ax-pow 4873 ax-pr 4936 ax-un 6991 ax-cnex 10030 ax-resscn 10031 ax-1cn 10032 ax-icn 10033 ax-addcl 10034 ax-addrcl 10035 ax-mulcl 10036 ax-mulrcl 10037 ax-mulcom 10038 ax-addass 10039 ax-mulass 10040 ax-distr 10041 ax-i2m1 10042 ax-1ne0 10043 ax-1rid 10044 ax-rnegex 10045 ax-rrecex 10046 ax-cnre 10047 ax-pre-lttri 10048 ax-pre-lttrn 10049 ax-pre-ltadd 10050 ax-pre-mulgt0 10051 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1055 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-mo 2503 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ne 2824 df-nel 2927 df-ral 2946 df-rex 2947 df-reu 2948 df-rab 2950 df-v 3233 df-sbc 3469 df-csb 3567 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-pss 3623 df-nul 3949 df-if 4120 df-pw 4193 df-sn 4211 df-pr 4213 df-tp 4215 df-op 4217 df-uni 4469 df-int 4508 df-iun 4554 df-br 4686 df-opab 4746 df-mpt 4763 df-tr 4786 df-id 5053 df-eprel 5058 df-po 5064 df-so 5065 df-fr 5102 df-we 5104 df-xp 5149 df-rel 5150 df-cnv 5151 df-co 5152 df-dm 5153 df-rn 5154 df-res 5155 df-ima 5156 df-pred 5718 df-ord 5764 df-on 5765 df-lim 5766 df-suc 5767 df-iota 5889 df-fun 5928 df-fn 5929 df-f 5930 df-f1 5931 df-fo 5932 df-f1o 5933 df-fv 5934 df-riota 6651 df-ov 6693 df-oprab 6694 df-mpt2 6695 df-om 7108 df-1st 7210 df-2nd 7211 df-wrecs 7452 df-recs 7513 df-rdg 7551 df-1o 7605 df-oadd 7609 df-er 7787 df-en 7998 df-dom 7999 df-sdom 8000 df-fin 8001 df-card 8803 df-pnf 10114 df-mnf 10115 df-xr 10116 df-ltxr 10117 df-le 10118 df-sub 10306 df-neg 10307 df-nn 11059 df-n0 11331 df-z 11416 df-uz 11726 df-fz 12365 df-fzo 12505 df-hash 13158 df-word 13331 df-s1 13334 |
This theorem is referenced by: efgsfo 18198 |
Copyright terms: Public domain | W3C validator |