![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > efgredlemf | Structured version Visualization version GIF version |
Description: Lemma for efgredleme 18363. (Contributed by Mario Carneiro, 4-Jun-2016.) |
Ref | Expression |
---|---|
efgval.w | ⊢ 𝑊 = ( I ‘Word (𝐼 × 2𝑜)) |
efgval.r | ⊢ ∼ = ( ~FG ‘𝐼) |
efgval2.m | ⊢ 𝑀 = (𝑦 ∈ 𝐼, 𝑧 ∈ 2𝑜 ↦ 〈𝑦, (1𝑜 ∖ 𝑧)〉) |
efgval2.t | ⊢ 𝑇 = (𝑣 ∈ 𝑊 ↦ (𝑛 ∈ (0...(♯‘𝑣)), 𝑤 ∈ (𝐼 × 2𝑜) ↦ (𝑣 splice 〈𝑛, 𝑛, 〈“𝑤(𝑀‘𝑤)”〉〉))) |
efgred.d | ⊢ 𝐷 = (𝑊 ∖ ∪ 𝑥 ∈ 𝑊 ran (𝑇‘𝑥)) |
efgred.s | ⊢ 𝑆 = (𝑚 ∈ {𝑡 ∈ (Word 𝑊 ∖ {∅}) ∣ ((𝑡‘0) ∈ 𝐷 ∧ ∀𝑘 ∈ (1..^(♯‘𝑡))(𝑡‘𝑘) ∈ ran (𝑇‘(𝑡‘(𝑘 − 1))))} ↦ (𝑚‘((♯‘𝑚) − 1))) |
efgredlem.1 | ⊢ (𝜑 → ∀𝑎 ∈ dom 𝑆∀𝑏 ∈ dom 𝑆((♯‘(𝑆‘𝑎)) < (♯‘(𝑆‘𝐴)) → ((𝑆‘𝑎) = (𝑆‘𝑏) → (𝑎‘0) = (𝑏‘0)))) |
efgredlem.2 | ⊢ (𝜑 → 𝐴 ∈ dom 𝑆) |
efgredlem.3 | ⊢ (𝜑 → 𝐵 ∈ dom 𝑆) |
efgredlem.4 | ⊢ (𝜑 → (𝑆‘𝐴) = (𝑆‘𝐵)) |
efgredlem.5 | ⊢ (𝜑 → ¬ (𝐴‘0) = (𝐵‘0)) |
efgredlemb.k | ⊢ 𝐾 = (((♯‘𝐴) − 1) − 1) |
efgredlemb.l | ⊢ 𝐿 = (((♯‘𝐵) − 1) − 1) |
Ref | Expression |
---|---|
efgredlemf | ⊢ (𝜑 → ((𝐴‘𝐾) ∈ 𝑊 ∧ (𝐵‘𝐿) ∈ 𝑊)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | efgredlem.2 | . . . . . 6 ⊢ (𝜑 → 𝐴 ∈ dom 𝑆) | |
2 | efgval.w | . . . . . . . 8 ⊢ 𝑊 = ( I ‘Word (𝐼 × 2𝑜)) | |
3 | efgval.r | . . . . . . . 8 ⊢ ∼ = ( ~FG ‘𝐼) | |
4 | efgval2.m | . . . . . . . 8 ⊢ 𝑀 = (𝑦 ∈ 𝐼, 𝑧 ∈ 2𝑜 ↦ 〈𝑦, (1𝑜 ∖ 𝑧)〉) | |
5 | efgval2.t | . . . . . . . 8 ⊢ 𝑇 = (𝑣 ∈ 𝑊 ↦ (𝑛 ∈ (0...(♯‘𝑣)), 𝑤 ∈ (𝐼 × 2𝑜) ↦ (𝑣 splice 〈𝑛, 𝑛, 〈“𝑤(𝑀‘𝑤)”〉〉))) | |
6 | efgred.d | . . . . . . . 8 ⊢ 𝐷 = (𝑊 ∖ ∪ 𝑥 ∈ 𝑊 ran (𝑇‘𝑥)) | |
7 | efgred.s | . . . . . . . 8 ⊢ 𝑆 = (𝑚 ∈ {𝑡 ∈ (Word 𝑊 ∖ {∅}) ∣ ((𝑡‘0) ∈ 𝐷 ∧ ∀𝑘 ∈ (1..^(♯‘𝑡))(𝑡‘𝑘) ∈ ran (𝑇‘(𝑡‘(𝑘 − 1))))} ↦ (𝑚‘((♯‘𝑚) − 1))) | |
8 | 2, 3, 4, 5, 6, 7 | efgsdm 18350 | . . . . . . 7 ⊢ (𝐴 ∈ dom 𝑆 ↔ (𝐴 ∈ (Word 𝑊 ∖ {∅}) ∧ (𝐴‘0) ∈ 𝐷 ∧ ∀𝑖 ∈ (1..^(♯‘𝐴))(𝐴‘𝑖) ∈ ran (𝑇‘(𝐴‘(𝑖 − 1))))) |
9 | 8 | simp1bi 1139 | . . . . . 6 ⊢ (𝐴 ∈ dom 𝑆 → 𝐴 ∈ (Word 𝑊 ∖ {∅})) |
10 | 1, 9 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ (Word 𝑊 ∖ {∅})) |
11 | 10 | eldifad 3735 | . . . 4 ⊢ (𝜑 → 𝐴 ∈ Word 𝑊) |
12 | wrdf 13506 | . . . 4 ⊢ (𝐴 ∈ Word 𝑊 → 𝐴:(0..^(♯‘𝐴))⟶𝑊) | |
13 | 11, 12 | syl 17 | . . 3 ⊢ (𝜑 → 𝐴:(0..^(♯‘𝐴))⟶𝑊) |
14 | fzossfz 12696 | . . . . 5 ⊢ (0..^((♯‘𝐴) − 1)) ⊆ (0...((♯‘𝐴) − 1)) | |
15 | lencl 13520 | . . . . . . . 8 ⊢ (𝐴 ∈ Word 𝑊 → (♯‘𝐴) ∈ ℕ0) | |
16 | 11, 15 | syl 17 | . . . . . . 7 ⊢ (𝜑 → (♯‘𝐴) ∈ ℕ0) |
17 | 16 | nn0zd 11687 | . . . . . 6 ⊢ (𝜑 → (♯‘𝐴) ∈ ℤ) |
18 | fzoval 12679 | . . . . . 6 ⊢ ((♯‘𝐴) ∈ ℤ → (0..^(♯‘𝐴)) = (0...((♯‘𝐴) − 1))) | |
19 | 17, 18 | syl 17 | . . . . 5 ⊢ (𝜑 → (0..^(♯‘𝐴)) = (0...((♯‘𝐴) − 1))) |
20 | 14, 19 | syl5sseqr 3803 | . . . 4 ⊢ (𝜑 → (0..^((♯‘𝐴) − 1)) ⊆ (0..^(♯‘𝐴))) |
21 | efgredlemb.k | . . . . 5 ⊢ 𝐾 = (((♯‘𝐴) − 1) − 1) | |
22 | efgredlem.1 | . . . . . . . 8 ⊢ (𝜑 → ∀𝑎 ∈ dom 𝑆∀𝑏 ∈ dom 𝑆((♯‘(𝑆‘𝑎)) < (♯‘(𝑆‘𝐴)) → ((𝑆‘𝑎) = (𝑆‘𝑏) → (𝑎‘0) = (𝑏‘0)))) | |
23 | efgredlem.3 | . . . . . . . 8 ⊢ (𝜑 → 𝐵 ∈ dom 𝑆) | |
24 | efgredlem.4 | . . . . . . . 8 ⊢ (𝜑 → (𝑆‘𝐴) = (𝑆‘𝐵)) | |
25 | efgredlem.5 | . . . . . . . 8 ⊢ (𝜑 → ¬ (𝐴‘0) = (𝐵‘0)) | |
26 | 2, 3, 4, 5, 6, 7, 22, 1, 23, 24, 25 | efgredlema 18360 | . . . . . . 7 ⊢ (𝜑 → (((♯‘𝐴) − 1) ∈ ℕ ∧ ((♯‘𝐵) − 1) ∈ ℕ)) |
27 | 26 | simpld 482 | . . . . . 6 ⊢ (𝜑 → ((♯‘𝐴) − 1) ∈ ℕ) |
28 | fzo0end 12768 | . . . . . 6 ⊢ (((♯‘𝐴) − 1) ∈ ℕ → (((♯‘𝐴) − 1) − 1) ∈ (0..^((♯‘𝐴) − 1))) | |
29 | 27, 28 | syl 17 | . . . . 5 ⊢ (𝜑 → (((♯‘𝐴) − 1) − 1) ∈ (0..^((♯‘𝐴) − 1))) |
30 | 21, 29 | syl5eqel 2854 | . . . 4 ⊢ (𝜑 → 𝐾 ∈ (0..^((♯‘𝐴) − 1))) |
31 | 20, 30 | sseldd 3753 | . . 3 ⊢ (𝜑 → 𝐾 ∈ (0..^(♯‘𝐴))) |
32 | 13, 31 | ffvelrnd 6505 | . 2 ⊢ (𝜑 → (𝐴‘𝐾) ∈ 𝑊) |
33 | 2, 3, 4, 5, 6, 7 | efgsdm 18350 | . . . . . . 7 ⊢ (𝐵 ∈ dom 𝑆 ↔ (𝐵 ∈ (Word 𝑊 ∖ {∅}) ∧ (𝐵‘0) ∈ 𝐷 ∧ ∀𝑖 ∈ (1..^(♯‘𝐵))(𝐵‘𝑖) ∈ ran (𝑇‘(𝐵‘(𝑖 − 1))))) |
34 | 33 | simp1bi 1139 | . . . . . 6 ⊢ (𝐵 ∈ dom 𝑆 → 𝐵 ∈ (Word 𝑊 ∖ {∅})) |
35 | 23, 34 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝐵 ∈ (Word 𝑊 ∖ {∅})) |
36 | 35 | eldifad 3735 | . . . 4 ⊢ (𝜑 → 𝐵 ∈ Word 𝑊) |
37 | wrdf 13506 | . . . 4 ⊢ (𝐵 ∈ Word 𝑊 → 𝐵:(0..^(♯‘𝐵))⟶𝑊) | |
38 | 36, 37 | syl 17 | . . 3 ⊢ (𝜑 → 𝐵:(0..^(♯‘𝐵))⟶𝑊) |
39 | fzossfz 12696 | . . . . 5 ⊢ (0..^((♯‘𝐵) − 1)) ⊆ (0...((♯‘𝐵) − 1)) | |
40 | lencl 13520 | . . . . . . . 8 ⊢ (𝐵 ∈ Word 𝑊 → (♯‘𝐵) ∈ ℕ0) | |
41 | 36, 40 | syl 17 | . . . . . . 7 ⊢ (𝜑 → (♯‘𝐵) ∈ ℕ0) |
42 | 41 | nn0zd 11687 | . . . . . 6 ⊢ (𝜑 → (♯‘𝐵) ∈ ℤ) |
43 | fzoval 12679 | . . . . . 6 ⊢ ((♯‘𝐵) ∈ ℤ → (0..^(♯‘𝐵)) = (0...((♯‘𝐵) − 1))) | |
44 | 42, 43 | syl 17 | . . . . 5 ⊢ (𝜑 → (0..^(♯‘𝐵)) = (0...((♯‘𝐵) − 1))) |
45 | 39, 44 | syl5sseqr 3803 | . . . 4 ⊢ (𝜑 → (0..^((♯‘𝐵) − 1)) ⊆ (0..^(♯‘𝐵))) |
46 | efgredlemb.l | . . . . 5 ⊢ 𝐿 = (((♯‘𝐵) − 1) − 1) | |
47 | 26 | simprd 483 | . . . . . 6 ⊢ (𝜑 → ((♯‘𝐵) − 1) ∈ ℕ) |
48 | fzo0end 12768 | . . . . . 6 ⊢ (((♯‘𝐵) − 1) ∈ ℕ → (((♯‘𝐵) − 1) − 1) ∈ (0..^((♯‘𝐵) − 1))) | |
49 | 47, 48 | syl 17 | . . . . 5 ⊢ (𝜑 → (((♯‘𝐵) − 1) − 1) ∈ (0..^((♯‘𝐵) − 1))) |
50 | 46, 49 | syl5eqel 2854 | . . . 4 ⊢ (𝜑 → 𝐿 ∈ (0..^((♯‘𝐵) − 1))) |
51 | 45, 50 | sseldd 3753 | . . 3 ⊢ (𝜑 → 𝐿 ∈ (0..^(♯‘𝐵))) |
52 | 38, 51 | ffvelrnd 6505 | . 2 ⊢ (𝜑 → (𝐵‘𝐿) ∈ 𝑊) |
53 | 32, 52 | jca 501 | 1 ⊢ (𝜑 → ((𝐴‘𝐾) ∈ 𝑊 ∧ (𝐵‘𝐿) ∈ 𝑊)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 382 = wceq 1631 ∈ wcel 2145 ∀wral 3061 {crab 3065 ∖ cdif 3720 ∅c0 4063 {csn 4317 〈cop 4323 〈cotp 4325 ∪ ciun 4655 class class class wbr 4787 ↦ cmpt 4864 I cid 5157 × cxp 5248 dom cdm 5250 ran crn 5251 ⟶wf 6026 ‘cfv 6030 (class class class)co 6796 ↦ cmpt2 6798 1𝑜c1o 7710 2𝑜c2o 7711 0cc0 10142 1c1 10143 < clt 10280 − cmin 10472 ℕcn 11226 ℕ0cn0 11499 ℤcz 11584 ...cfz 12533 ..^cfzo 12673 ♯chash 13321 Word cword 13487 splice csplice 13492 〈“cs2 13795 ~FG cefg 18326 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 ax-5 1991 ax-6 2057 ax-7 2093 ax-8 2147 ax-9 2154 ax-10 2174 ax-11 2190 ax-12 2203 ax-13 2408 ax-ext 2751 ax-rep 4905 ax-sep 4916 ax-nul 4924 ax-pow 4975 ax-pr 5035 ax-un 7100 ax-cnex 10198 ax-resscn 10199 ax-1cn 10200 ax-icn 10201 ax-addcl 10202 ax-addrcl 10203 ax-mulcl 10204 ax-mulrcl 10205 ax-mulcom 10206 ax-addass 10207 ax-mulass 10208 ax-distr 10209 ax-i2m1 10210 ax-1ne0 10211 ax-1rid 10212 ax-rnegex 10213 ax-rrecex 10214 ax-cnre 10215 ax-pre-lttri 10216 ax-pre-lttrn 10217 ax-pre-ltadd 10218 ax-pre-mulgt0 10219 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 837 df-3or 1072 df-3an 1073 df-tru 1634 df-ex 1853 df-nf 1858 df-sb 2050 df-eu 2622 df-mo 2623 df-clab 2758 df-cleq 2764 df-clel 2767 df-nfc 2902 df-ne 2944 df-nel 3047 df-ral 3066 df-rex 3067 df-reu 3068 df-rab 3070 df-v 3353 df-sbc 3588 df-csb 3683 df-dif 3726 df-un 3728 df-in 3730 df-ss 3737 df-pss 3739 df-nul 4064 df-if 4227 df-pw 4300 df-sn 4318 df-pr 4320 df-tp 4322 df-op 4324 df-uni 4576 df-int 4613 df-iun 4657 df-br 4788 df-opab 4848 df-mpt 4865 df-tr 4888 df-id 5158 df-eprel 5163 df-po 5171 df-so 5172 df-fr 5209 df-we 5211 df-xp 5256 df-rel 5257 df-cnv 5258 df-co 5259 df-dm 5260 df-rn 5261 df-res 5262 df-ima 5263 df-pred 5822 df-ord 5868 df-on 5869 df-lim 5870 df-suc 5871 df-iota 5993 df-fun 6032 df-fn 6033 df-f 6034 df-f1 6035 df-fo 6036 df-f1o 6037 df-fv 6038 df-riota 6757 df-ov 6799 df-oprab 6800 df-mpt2 6801 df-om 7217 df-1st 7319 df-2nd 7320 df-wrecs 7563 df-recs 7625 df-rdg 7663 df-1o 7717 df-oadd 7721 df-er 7900 df-en 8114 df-dom 8115 df-sdom 8116 df-fin 8117 df-card 8969 df-pnf 10282 df-mnf 10283 df-xr 10284 df-ltxr 10285 df-le 10286 df-sub 10474 df-neg 10475 df-nn 11227 df-2 11285 df-n0 11500 df-z 11585 df-uz 11894 df-fz 12534 df-fzo 12674 df-hash 13322 df-word 13495 |
This theorem is referenced by: efgredlemg 18362 efgredleme 18363 |
Copyright terms: Public domain | W3C validator |