Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  efgredlemf Structured version   Visualization version   GIF version

Theorem efgredlemf 18361
 Description: Lemma for efgredleme 18363. (Contributed by Mario Carneiro, 4-Jun-2016.)
Hypotheses
Ref Expression
efgval.w 𝑊 = ( I ‘Word (𝐼 × 2𝑜))
efgval.r = ( ~FG𝐼)
efgval2.m 𝑀 = (𝑦𝐼, 𝑧 ∈ 2𝑜 ↦ ⟨𝑦, (1𝑜𝑧)⟩)
efgval2.t 𝑇 = (𝑣𝑊 ↦ (𝑛 ∈ (0...(♯‘𝑣)), 𝑤 ∈ (𝐼 × 2𝑜) ↦ (𝑣 splice ⟨𝑛, 𝑛, ⟨“𝑤(𝑀𝑤)”⟩⟩)))
efgred.d 𝐷 = (𝑊 𝑥𝑊 ran (𝑇𝑥))
efgred.s 𝑆 = (𝑚 ∈ {𝑡 ∈ (Word 𝑊 ∖ {∅}) ∣ ((𝑡‘0) ∈ 𝐷 ∧ ∀𝑘 ∈ (1..^(♯‘𝑡))(𝑡𝑘) ∈ ran (𝑇‘(𝑡‘(𝑘 − 1))))} ↦ (𝑚‘((♯‘𝑚) − 1)))
efgredlem.1 (𝜑 → ∀𝑎 ∈ dom 𝑆𝑏 ∈ dom 𝑆((♯‘(𝑆𝑎)) < (♯‘(𝑆𝐴)) → ((𝑆𝑎) = (𝑆𝑏) → (𝑎‘0) = (𝑏‘0))))
efgredlem.2 (𝜑𝐴 ∈ dom 𝑆)
efgredlem.3 (𝜑𝐵 ∈ dom 𝑆)
efgredlem.4 (𝜑 → (𝑆𝐴) = (𝑆𝐵))
efgredlem.5 (𝜑 → ¬ (𝐴‘0) = (𝐵‘0))
efgredlemb.k 𝐾 = (((♯‘𝐴) − 1) − 1)
efgredlemb.l 𝐿 = (((♯‘𝐵) − 1) − 1)
Assertion
Ref Expression
efgredlemf (𝜑 → ((𝐴𝐾) ∈ 𝑊 ∧ (𝐵𝐿) ∈ 𝑊))
Distinct variable groups:   𝑎,𝑏,𝐴   𝑦,𝑎,𝑧,𝑏   𝐿,𝑎,𝑏   𝐾,𝑎,𝑏   𝑡,𝑛,𝑣,𝑤,𝑦,𝑧   𝑚,𝑎,𝑛,𝑡,𝑣,𝑤,𝑥,𝑀,𝑏   𝑘,𝑎,𝑇,𝑏,𝑚,𝑡,𝑥   𝑊,𝑎,𝑏   𝑘,𝑛,𝑣,𝑤,𝑦,𝑧,𝑊,𝑚,𝑡,𝑥   ,𝑎,𝑏,𝑚,𝑡,𝑥,𝑦,𝑧   𝐵,𝑎,𝑏   𝑆,𝑎,𝑏   𝐼,𝑎,𝑏,𝑚,𝑛,𝑡,𝑣,𝑤,𝑥,𝑦,𝑧   𝐷,𝑎,𝑏,𝑚,𝑡
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧,𝑤,𝑣,𝑡,𝑘,𝑚,𝑛,𝑎,𝑏)   𝐴(𝑥,𝑦,𝑧,𝑤,𝑣,𝑡,𝑘,𝑚,𝑛)   𝐵(𝑥,𝑦,𝑧,𝑤,𝑣,𝑡,𝑘,𝑚,𝑛)   𝐷(𝑥,𝑦,𝑧,𝑤,𝑣,𝑘,𝑛)   (𝑤,𝑣,𝑘,𝑛)   𝑆(𝑥,𝑦,𝑧,𝑤,𝑣,𝑡,𝑘,𝑚,𝑛)   𝑇(𝑦,𝑧,𝑤,𝑣,𝑛)   𝐼(𝑘)   𝐾(𝑥,𝑦,𝑧,𝑤,𝑣,𝑡,𝑘,𝑚,𝑛)   𝐿(𝑥,𝑦,𝑧,𝑤,𝑣,𝑡,𝑘,𝑚,𝑛)   𝑀(𝑦,𝑧,𝑘)

Proof of Theorem efgredlemf
Dummy variable 𝑖 is distinct from all other variables.
StepHypRef Expression
1 efgredlem.2 . . . . . 6 (𝜑𝐴 ∈ dom 𝑆)
2 efgval.w . . . . . . . 8 𝑊 = ( I ‘Word (𝐼 × 2𝑜))
3 efgval.r . . . . . . . 8 = ( ~FG𝐼)
4 efgval2.m . . . . . . . 8 𝑀 = (𝑦𝐼, 𝑧 ∈ 2𝑜 ↦ ⟨𝑦, (1𝑜𝑧)⟩)
5 efgval2.t . . . . . . . 8 𝑇 = (𝑣𝑊 ↦ (𝑛 ∈ (0...(♯‘𝑣)), 𝑤 ∈ (𝐼 × 2𝑜) ↦ (𝑣 splice ⟨𝑛, 𝑛, ⟨“𝑤(𝑀𝑤)”⟩⟩)))
6 efgred.d . . . . . . . 8 𝐷 = (𝑊 𝑥𝑊 ran (𝑇𝑥))
7 efgred.s . . . . . . . 8 𝑆 = (𝑚 ∈ {𝑡 ∈ (Word 𝑊 ∖ {∅}) ∣ ((𝑡‘0) ∈ 𝐷 ∧ ∀𝑘 ∈ (1..^(♯‘𝑡))(𝑡𝑘) ∈ ran (𝑇‘(𝑡‘(𝑘 − 1))))} ↦ (𝑚‘((♯‘𝑚) − 1)))
82, 3, 4, 5, 6, 7efgsdm 18350 . . . . . . 7 (𝐴 ∈ dom 𝑆 ↔ (𝐴 ∈ (Word 𝑊 ∖ {∅}) ∧ (𝐴‘0) ∈ 𝐷 ∧ ∀𝑖 ∈ (1..^(♯‘𝐴))(𝐴𝑖) ∈ ran (𝑇‘(𝐴‘(𝑖 − 1)))))
98simp1bi 1139 . . . . . 6 (𝐴 ∈ dom 𝑆𝐴 ∈ (Word 𝑊 ∖ {∅}))
101, 9syl 17 . . . . 5 (𝜑𝐴 ∈ (Word 𝑊 ∖ {∅}))
1110eldifad 3735 . . . 4 (𝜑𝐴 ∈ Word 𝑊)
12 wrdf 13506 . . . 4 (𝐴 ∈ Word 𝑊𝐴:(0..^(♯‘𝐴))⟶𝑊)
1311, 12syl 17 . . 3 (𝜑𝐴:(0..^(♯‘𝐴))⟶𝑊)
14 fzossfz 12696 . . . . 5 (0..^((♯‘𝐴) − 1)) ⊆ (0...((♯‘𝐴) − 1))
15 lencl 13520 . . . . . . . 8 (𝐴 ∈ Word 𝑊 → (♯‘𝐴) ∈ ℕ0)
1611, 15syl 17 . . . . . . 7 (𝜑 → (♯‘𝐴) ∈ ℕ0)
1716nn0zd 11687 . . . . . 6 (𝜑 → (♯‘𝐴) ∈ ℤ)
18 fzoval 12679 . . . . . 6 ((♯‘𝐴) ∈ ℤ → (0..^(♯‘𝐴)) = (0...((♯‘𝐴) − 1)))
1917, 18syl 17 . . . . 5 (𝜑 → (0..^(♯‘𝐴)) = (0...((♯‘𝐴) − 1)))
2014, 19syl5sseqr 3803 . . . 4 (𝜑 → (0..^((♯‘𝐴) − 1)) ⊆ (0..^(♯‘𝐴)))
21 efgredlemb.k . . . . 5 𝐾 = (((♯‘𝐴) − 1) − 1)
22 efgredlem.1 . . . . . . . 8 (𝜑 → ∀𝑎 ∈ dom 𝑆𝑏 ∈ dom 𝑆((♯‘(𝑆𝑎)) < (♯‘(𝑆𝐴)) → ((𝑆𝑎) = (𝑆𝑏) → (𝑎‘0) = (𝑏‘0))))
23 efgredlem.3 . . . . . . . 8 (𝜑𝐵 ∈ dom 𝑆)
24 efgredlem.4 . . . . . . . 8 (𝜑 → (𝑆𝐴) = (𝑆𝐵))
25 efgredlem.5 . . . . . . . 8 (𝜑 → ¬ (𝐴‘0) = (𝐵‘0))
262, 3, 4, 5, 6, 7, 22, 1, 23, 24, 25efgredlema 18360 . . . . . . 7 (𝜑 → (((♯‘𝐴) − 1) ∈ ℕ ∧ ((♯‘𝐵) − 1) ∈ ℕ))
2726simpld 482 . . . . . 6 (𝜑 → ((♯‘𝐴) − 1) ∈ ℕ)
28 fzo0end 12768 . . . . . 6 (((♯‘𝐴) − 1) ∈ ℕ → (((♯‘𝐴) − 1) − 1) ∈ (0..^((♯‘𝐴) − 1)))
2927, 28syl 17 . . . . 5 (𝜑 → (((♯‘𝐴) − 1) − 1) ∈ (0..^((♯‘𝐴) − 1)))
3021, 29syl5eqel 2854 . . . 4 (𝜑𝐾 ∈ (0..^((♯‘𝐴) − 1)))
3120, 30sseldd 3753 . . 3 (𝜑𝐾 ∈ (0..^(♯‘𝐴)))
3213, 31ffvelrnd 6505 . 2 (𝜑 → (𝐴𝐾) ∈ 𝑊)
332, 3, 4, 5, 6, 7efgsdm 18350 . . . . . . 7 (𝐵 ∈ dom 𝑆 ↔ (𝐵 ∈ (Word 𝑊 ∖ {∅}) ∧ (𝐵‘0) ∈ 𝐷 ∧ ∀𝑖 ∈ (1..^(♯‘𝐵))(𝐵𝑖) ∈ ran (𝑇‘(𝐵‘(𝑖 − 1)))))
3433simp1bi 1139 . . . . . 6 (𝐵 ∈ dom 𝑆𝐵 ∈ (Word 𝑊 ∖ {∅}))
3523, 34syl 17 . . . . 5 (𝜑𝐵 ∈ (Word 𝑊 ∖ {∅}))
3635eldifad 3735 . . . 4 (𝜑𝐵 ∈ Word 𝑊)
37 wrdf 13506 . . . 4 (𝐵 ∈ Word 𝑊𝐵:(0..^(♯‘𝐵))⟶𝑊)
3836, 37syl 17 . . 3 (𝜑𝐵:(0..^(♯‘𝐵))⟶𝑊)
39 fzossfz 12696 . . . . 5 (0..^((♯‘𝐵) − 1)) ⊆ (0...((♯‘𝐵) − 1))
40 lencl 13520 . . . . . . . 8 (𝐵 ∈ Word 𝑊 → (♯‘𝐵) ∈ ℕ0)
4136, 40syl 17 . . . . . . 7 (𝜑 → (♯‘𝐵) ∈ ℕ0)
4241nn0zd 11687 . . . . . 6 (𝜑 → (♯‘𝐵) ∈ ℤ)
43 fzoval 12679 . . . . . 6 ((♯‘𝐵) ∈ ℤ → (0..^(♯‘𝐵)) = (0...((♯‘𝐵) − 1)))
4442, 43syl 17 . . . . 5 (𝜑 → (0..^(♯‘𝐵)) = (0...((♯‘𝐵) − 1)))
4539, 44syl5sseqr 3803 . . . 4 (𝜑 → (0..^((♯‘𝐵) − 1)) ⊆ (0..^(♯‘𝐵)))
46 efgredlemb.l . . . . 5 𝐿 = (((♯‘𝐵) − 1) − 1)
4726simprd 483 . . . . . 6 (𝜑 → ((♯‘𝐵) − 1) ∈ ℕ)
48 fzo0end 12768 . . . . . 6 (((♯‘𝐵) − 1) ∈ ℕ → (((♯‘𝐵) − 1) − 1) ∈ (0..^((♯‘𝐵) − 1)))
4947, 48syl 17 . . . . 5 (𝜑 → (((♯‘𝐵) − 1) − 1) ∈ (0..^((♯‘𝐵) − 1)))
5046, 49syl5eqel 2854 . . . 4 (𝜑𝐿 ∈ (0..^((♯‘𝐵) − 1)))
5145, 50sseldd 3753 . . 3 (𝜑𝐿 ∈ (0..^(♯‘𝐵)))
5238, 51ffvelrnd 6505 . 2 (𝜑 → (𝐵𝐿) ∈ 𝑊)
5332, 52jca 501 1 (𝜑 → ((𝐴𝐾) ∈ 𝑊 ∧ (𝐵𝐿) ∈ 𝑊))
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ∧ wa 382   = wceq 1631   ∈ wcel 2145  ∀wral 3061  {crab 3065   ∖ cdif 3720  ∅c0 4063  {csn 4317  ⟨cop 4323  ⟨cotp 4325  ∪ ciun 4655   class class class wbr 4787   ↦ cmpt 4864   I cid 5157   × cxp 5248  dom cdm 5250  ran crn 5251  ⟶wf 6026  ‘cfv 6030  (class class class)co 6796   ↦ cmpt2 6798  1𝑜c1o 7710  2𝑜c2o 7711  0cc0 10142  1c1 10143   < clt 10280   − cmin 10472  ℕcn 11226  ℕ0cn0 11499  ℤcz 11584  ...cfz 12533  ..^cfzo 12673  ♯chash 13321  Word cword 13487   splice csplice 13492  ⟨“cs2 13795   ~FG cefg 18326 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-rep 4905  ax-sep 4916  ax-nul 4924  ax-pow 4975  ax-pr 5035  ax-un 7100  ax-cnex 10198  ax-resscn 10199  ax-1cn 10200  ax-icn 10201  ax-addcl 10202  ax-addrcl 10203  ax-mulcl 10204  ax-mulrcl 10205  ax-mulcom 10206  ax-addass 10207  ax-mulass 10208  ax-distr 10209  ax-i2m1 10210  ax-1ne0 10211  ax-1rid 10212  ax-rnegex 10213  ax-rrecex 10214  ax-cnre 10215  ax-pre-lttri 10216  ax-pre-lttrn 10217  ax-pre-ltadd 10218  ax-pre-mulgt0 10219 This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3or 1072  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-pss 3739  df-nul 4064  df-if 4227  df-pw 4300  df-sn 4318  df-pr 4320  df-tp 4322  df-op 4324  df-uni 4576  df-int 4613  df-iun 4657  df-br 4788  df-opab 4848  df-mpt 4865  df-tr 4888  df-id 5158  df-eprel 5163  df-po 5171  df-so 5172  df-fr 5209  df-we 5211  df-xp 5256  df-rel 5257  df-cnv 5258  df-co 5259  df-dm 5260  df-rn 5261  df-res 5262  df-ima 5263  df-pred 5822  df-ord 5868  df-on 5869  df-lim 5870  df-suc 5871  df-iota 5993  df-fun 6032  df-fn 6033  df-f 6034  df-f1 6035  df-fo 6036  df-f1o 6037  df-fv 6038  df-riota 6757  df-ov 6799  df-oprab 6800  df-mpt2 6801  df-om 7217  df-1st 7319  df-2nd 7320  df-wrecs 7563  df-recs 7625  df-rdg 7663  df-1o 7717  df-oadd 7721  df-er 7900  df-en 8114  df-dom 8115  df-sdom 8116  df-fin 8117  df-card 8969  df-pnf 10282  df-mnf 10283  df-xr 10284  df-ltxr 10285  df-le 10286  df-sub 10474  df-neg 10475  df-nn 11227  df-2 11285  df-n0 11500  df-z 11585  df-uz 11894  df-fz 12534  df-fzo 12674  df-hash 13322  df-word 13495 This theorem is referenced by:  efgredlemg  18362  efgredleme  18363
 Copyright terms: Public domain W3C validator