Step | Hyp | Ref
| Expression |
1 | | efgredlemd.c |
. . . . . . 7
⊢ (𝜑 → 𝐶 ∈ dom 𝑆) |
2 | | efgval.w |
. . . . . . . . 9
⊢ 𝑊 = ( I ‘Word (𝐼 ×
2𝑜)) |
3 | | efgval.r |
. . . . . . . . 9
⊢ ∼ = (
~FG ‘𝐼) |
4 | | efgval2.m |
. . . . . . . . 9
⊢ 𝑀 = (𝑦 ∈ 𝐼, 𝑧 ∈ 2𝑜 ↦
〈𝑦,
(1𝑜 ∖ 𝑧)〉) |
5 | | efgval2.t |
. . . . . . . . 9
⊢ 𝑇 = (𝑣 ∈ 𝑊 ↦ (𝑛 ∈ (0...(♯‘𝑣)), 𝑤 ∈ (𝐼 × 2𝑜) ↦
(𝑣 splice 〈𝑛, 𝑛, 〈“𝑤(𝑀‘𝑤)”〉〉))) |
6 | | efgred.d |
. . . . . . . . 9
⊢ 𝐷 = (𝑊 ∖ ∪
𝑥 ∈ 𝑊 ran (𝑇‘𝑥)) |
7 | | efgred.s |
. . . . . . . . 9
⊢ 𝑆 = (𝑚 ∈ {𝑡 ∈ (Word 𝑊 ∖ {∅}) ∣ ((𝑡‘0) ∈ 𝐷 ∧ ∀𝑘 ∈
(1..^(♯‘𝑡))(𝑡‘𝑘) ∈ ran (𝑇‘(𝑡‘(𝑘 − 1))))} ↦ (𝑚‘((♯‘𝑚) − 1))) |
8 | 2, 3, 4, 5, 6, 7 | efgsdm 18343 |
. . . . . . . 8
⊢ (𝐶 ∈ dom 𝑆 ↔ (𝐶 ∈ (Word 𝑊 ∖ {∅}) ∧ (𝐶‘0) ∈ 𝐷 ∧ ∀𝑖 ∈ (1..^(♯‘𝐶))(𝐶‘𝑖) ∈ ran (𝑇‘(𝐶‘(𝑖 − 1))))) |
9 | 8 | simp1bi 1140 |
. . . . . . 7
⊢ (𝐶 ∈ dom 𝑆 → 𝐶 ∈ (Word 𝑊 ∖ {∅})) |
10 | 1, 9 | syl 17 |
. . . . . 6
⊢ (𝜑 → 𝐶 ∈ (Word 𝑊 ∖ {∅})) |
11 | 10 | eldifad 3727 |
. . . . 5
⊢ (𝜑 → 𝐶 ∈ Word 𝑊) |
12 | | efgredlem.2 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐴 ∈ dom 𝑆) |
13 | 2, 3, 4, 5, 6, 7 | efgsdm 18343 |
. . . . . . . . . . 11
⊢ (𝐴 ∈ dom 𝑆 ↔ (𝐴 ∈ (Word 𝑊 ∖ {∅}) ∧ (𝐴‘0) ∈ 𝐷 ∧ ∀𝑖 ∈ (1..^(♯‘𝐴))(𝐴‘𝑖) ∈ ran (𝑇‘(𝐴‘(𝑖 − 1))))) |
14 | 13 | simp1bi 1140 |
. . . . . . . . . 10
⊢ (𝐴 ∈ dom 𝑆 → 𝐴 ∈ (Word 𝑊 ∖ {∅})) |
15 | 12, 14 | syl 17 |
. . . . . . . . 9
⊢ (𝜑 → 𝐴 ∈ (Word 𝑊 ∖ {∅})) |
16 | 15 | eldifad 3727 |
. . . . . . . 8
⊢ (𝜑 → 𝐴 ∈ Word 𝑊) |
17 | | wrdf 13496 |
. . . . . . . 8
⊢ (𝐴 ∈ Word 𝑊 → 𝐴:(0..^(♯‘𝐴))⟶𝑊) |
18 | 16, 17 | syl 17 |
. . . . . . 7
⊢ (𝜑 → 𝐴:(0..^(♯‘𝐴))⟶𝑊) |
19 | | fzossfz 12682 |
. . . . . . . . 9
⊢
(0..^((♯‘𝐴) − 1)) ⊆
(0...((♯‘𝐴)
− 1)) |
20 | | lencl 13510 |
. . . . . . . . . . . 12
⊢ (𝐴 ∈ Word 𝑊 → (♯‘𝐴) ∈
ℕ0) |
21 | 16, 20 | syl 17 |
. . . . . . . . . . 11
⊢ (𝜑 → (♯‘𝐴) ∈
ℕ0) |
22 | 21 | nn0zd 11672 |
. . . . . . . . . 10
⊢ (𝜑 → (♯‘𝐴) ∈
ℤ) |
23 | | fzoval 12665 |
. . . . . . . . . 10
⊢
((♯‘𝐴)
∈ ℤ → (0..^(♯‘𝐴)) = (0...((♯‘𝐴) − 1))) |
24 | 22, 23 | syl 17 |
. . . . . . . . 9
⊢ (𝜑 → (0..^(♯‘𝐴)) = (0...((♯‘𝐴) − 1))) |
25 | 19, 24 | syl5sseqr 3795 |
. . . . . . . 8
⊢ (𝜑 → (0..^((♯‘𝐴) − 1)) ⊆
(0..^(♯‘𝐴))) |
26 | | efgredlemb.k |
. . . . . . . . 9
⊢ 𝐾 = (((♯‘𝐴) − 1) −
1) |
27 | | efgredlem.1 |
. . . . . . . . . . . 12
⊢ (𝜑 → ∀𝑎 ∈ dom 𝑆∀𝑏 ∈ dom 𝑆((♯‘(𝑆‘𝑎)) < (♯‘(𝑆‘𝐴)) → ((𝑆‘𝑎) = (𝑆‘𝑏) → (𝑎‘0) = (𝑏‘0)))) |
28 | | efgredlem.3 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝐵 ∈ dom 𝑆) |
29 | | efgredlem.4 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝑆‘𝐴) = (𝑆‘𝐵)) |
30 | | efgredlem.5 |
. . . . . . . . . . . 12
⊢ (𝜑 → ¬ (𝐴‘0) = (𝐵‘0)) |
31 | 2, 3, 4, 5, 6, 7, 27, 12, 28, 29, 30 | efgredlema 18353 |
. . . . . . . . . . 11
⊢ (𝜑 → (((♯‘𝐴) − 1) ∈ ℕ
∧ ((♯‘𝐵)
− 1) ∈ ℕ)) |
32 | 31 | simpld 477 |
. . . . . . . . . 10
⊢ (𝜑 → ((♯‘𝐴) − 1) ∈
ℕ) |
33 | | fzo0end 12754 |
. . . . . . . . . 10
⊢
(((♯‘𝐴)
− 1) ∈ ℕ → (((♯‘𝐴) − 1) − 1) ∈
(0..^((♯‘𝐴)
− 1))) |
34 | 32, 33 | syl 17 |
. . . . . . . . 9
⊢ (𝜑 → (((♯‘𝐴) − 1) − 1) ∈
(0..^((♯‘𝐴)
− 1))) |
35 | 26, 34 | syl5eqel 2843 |
. . . . . . . 8
⊢ (𝜑 → 𝐾 ∈ (0..^((♯‘𝐴) − 1))) |
36 | 25, 35 | sseldd 3745 |
. . . . . . 7
⊢ (𝜑 → 𝐾 ∈ (0..^(♯‘𝐴))) |
37 | 18, 36 | ffvelrnd 6523 |
. . . . . 6
⊢ (𝜑 → (𝐴‘𝐾) ∈ 𝑊) |
38 | 37 | s1cld 13573 |
. . . . 5
⊢ (𝜑 → 〈“(𝐴‘𝐾)”〉 ∈ Word 𝑊) |
39 | | eldifsn 4462 |
. . . . . . . 8
⊢ (𝐶 ∈ (Word 𝑊 ∖ {∅}) ↔ (𝐶 ∈ Word 𝑊 ∧ 𝐶 ≠ ∅)) |
40 | | lennncl 13511 |
. . . . . . . 8
⊢ ((𝐶 ∈ Word 𝑊 ∧ 𝐶 ≠ ∅) → (♯‘𝐶) ∈
ℕ) |
41 | 39, 40 | sylbi 207 |
. . . . . . 7
⊢ (𝐶 ∈ (Word 𝑊 ∖ {∅}) →
(♯‘𝐶) ∈
ℕ) |
42 | 10, 41 | syl 17 |
. . . . . 6
⊢ (𝜑 → (♯‘𝐶) ∈
ℕ) |
43 | | lbfzo0 12702 |
. . . . . 6
⊢ (0 ∈
(0..^(♯‘𝐶))
↔ (♯‘𝐶)
∈ ℕ) |
44 | 42, 43 | sylibr 224 |
. . . . 5
⊢ (𝜑 → 0 ∈
(0..^(♯‘𝐶))) |
45 | | ccatval1 13549 |
. . . . 5
⊢ ((𝐶 ∈ Word 𝑊 ∧ 〈“(𝐴‘𝐾)”〉 ∈ Word 𝑊 ∧ 0 ∈ (0..^(♯‘𝐶))) → ((𝐶 ++ 〈“(𝐴‘𝐾)”〉)‘0) = (𝐶‘0)) |
46 | 11, 38, 44, 45 | syl3anc 1477 |
. . . 4
⊢ (𝜑 → ((𝐶 ++ 〈“(𝐴‘𝐾)”〉)‘0) = (𝐶‘0)) |
47 | 2, 3, 4, 5, 6, 7 | efgsdm 18343 |
. . . . . . . . . . 11
⊢ (𝐵 ∈ dom 𝑆 ↔ (𝐵 ∈ (Word 𝑊 ∖ {∅}) ∧ (𝐵‘0) ∈ 𝐷 ∧ ∀𝑖 ∈ (1..^(♯‘𝐵))(𝐵‘𝑖) ∈ ran (𝑇‘(𝐵‘(𝑖 − 1))))) |
48 | 47 | simp1bi 1140 |
. . . . . . . . . 10
⊢ (𝐵 ∈ dom 𝑆 → 𝐵 ∈ (Word 𝑊 ∖ {∅})) |
49 | 28, 48 | syl 17 |
. . . . . . . . 9
⊢ (𝜑 → 𝐵 ∈ (Word 𝑊 ∖ {∅})) |
50 | 49 | eldifad 3727 |
. . . . . . . 8
⊢ (𝜑 → 𝐵 ∈ Word 𝑊) |
51 | | wrdf 13496 |
. . . . . . . 8
⊢ (𝐵 ∈ Word 𝑊 → 𝐵:(0..^(♯‘𝐵))⟶𝑊) |
52 | 50, 51 | syl 17 |
. . . . . . 7
⊢ (𝜑 → 𝐵:(0..^(♯‘𝐵))⟶𝑊) |
53 | | fzossfz 12682 |
. . . . . . . . 9
⊢
(0..^((♯‘𝐵) − 1)) ⊆
(0...((♯‘𝐵)
− 1)) |
54 | | lencl 13510 |
. . . . . . . . . . . 12
⊢ (𝐵 ∈ Word 𝑊 → (♯‘𝐵) ∈
ℕ0) |
55 | 50, 54 | syl 17 |
. . . . . . . . . . 11
⊢ (𝜑 → (♯‘𝐵) ∈
ℕ0) |
56 | 55 | nn0zd 11672 |
. . . . . . . . . 10
⊢ (𝜑 → (♯‘𝐵) ∈
ℤ) |
57 | | fzoval 12665 |
. . . . . . . . . 10
⊢
((♯‘𝐵)
∈ ℤ → (0..^(♯‘𝐵)) = (0...((♯‘𝐵) − 1))) |
58 | 56, 57 | syl 17 |
. . . . . . . . 9
⊢ (𝜑 → (0..^(♯‘𝐵)) = (0...((♯‘𝐵) − 1))) |
59 | 53, 58 | syl5sseqr 3795 |
. . . . . . . 8
⊢ (𝜑 → (0..^((♯‘𝐵) − 1)) ⊆
(0..^(♯‘𝐵))) |
60 | | efgredlemb.l |
. . . . . . . . 9
⊢ 𝐿 = (((♯‘𝐵) − 1) −
1) |
61 | 31 | simprd 482 |
. . . . . . . . . 10
⊢ (𝜑 → ((♯‘𝐵) − 1) ∈
ℕ) |
62 | | fzo0end 12754 |
. . . . . . . . . 10
⊢
(((♯‘𝐵)
− 1) ∈ ℕ → (((♯‘𝐵) − 1) − 1) ∈
(0..^((♯‘𝐵)
− 1))) |
63 | 61, 62 | syl 17 |
. . . . . . . . 9
⊢ (𝜑 → (((♯‘𝐵) − 1) − 1) ∈
(0..^((♯‘𝐵)
− 1))) |
64 | 60, 63 | syl5eqel 2843 |
. . . . . . . 8
⊢ (𝜑 → 𝐿 ∈ (0..^((♯‘𝐵) − 1))) |
65 | 59, 64 | sseldd 3745 |
. . . . . . 7
⊢ (𝜑 → 𝐿 ∈ (0..^(♯‘𝐵))) |
66 | 52, 65 | ffvelrnd 6523 |
. . . . . 6
⊢ (𝜑 → (𝐵‘𝐿) ∈ 𝑊) |
67 | 66 | s1cld 13573 |
. . . . 5
⊢ (𝜑 → 〈“(𝐵‘𝐿)”〉 ∈ Word 𝑊) |
68 | | ccatval1 13549 |
. . . . 5
⊢ ((𝐶 ∈ Word 𝑊 ∧ 〈“(𝐵‘𝐿)”〉 ∈ Word 𝑊 ∧ 0 ∈ (0..^(♯‘𝐶))) → ((𝐶 ++ 〈“(𝐵‘𝐿)”〉)‘0) = (𝐶‘0)) |
69 | 11, 67, 44, 68 | syl3anc 1477 |
. . . 4
⊢ (𝜑 → ((𝐶 ++ 〈“(𝐵‘𝐿)”〉)‘0) = (𝐶‘0)) |
70 | 46, 69 | eqtr4d 2797 |
. . 3
⊢ (𝜑 → ((𝐶 ++ 〈“(𝐴‘𝐾)”〉)‘0) = ((𝐶 ++ 〈“(𝐵‘𝐿)”〉)‘0)) |
71 | | fviss 6418 |
. . . . . . . . . 10
⊢ ( I
‘Word (𝐼 ×
2𝑜)) ⊆ Word (𝐼 ×
2𝑜) |
72 | 2, 71 | eqsstri 3776 |
. . . . . . . . 9
⊢ 𝑊 ⊆ Word (𝐼 ×
2𝑜) |
73 | 72, 37 | sseldi 3742 |
. . . . . . . 8
⊢ (𝜑 → (𝐴‘𝐾) ∈ Word (𝐼 ×
2𝑜)) |
74 | | lencl 13510 |
. . . . . . . 8
⊢ ((𝐴‘𝐾) ∈ Word (𝐼 × 2𝑜) →
(♯‘(𝐴‘𝐾)) ∈
ℕ0) |
75 | 73, 74 | syl 17 |
. . . . . . 7
⊢ (𝜑 → (♯‘(𝐴‘𝐾)) ∈
ℕ0) |
76 | 75 | nn0red 11544 |
. . . . . 6
⊢ (𝜑 → (♯‘(𝐴‘𝐾)) ∈ ℝ) |
77 | | 2rp 12030 |
. . . . . 6
⊢ 2 ∈
ℝ+ |
78 | | ltaddrp 12060 |
. . . . . 6
⊢
(((♯‘(𝐴‘𝐾)) ∈ ℝ ∧ 2 ∈
ℝ+) → (♯‘(𝐴‘𝐾)) < ((♯‘(𝐴‘𝐾)) + 2)) |
79 | 76, 77, 78 | sylancl 697 |
. . . . 5
⊢ (𝜑 → (♯‘(𝐴‘𝐾)) < ((♯‘(𝐴‘𝐾)) + 2)) |
80 | 21 | nn0red 11544 |
. . . . . . . . . . 11
⊢ (𝜑 → (♯‘𝐴) ∈
ℝ) |
81 | 80 | lem1d 11149 |
. . . . . . . . . 10
⊢ (𝜑 → ((♯‘𝐴) − 1) ≤
(♯‘𝐴)) |
82 | | fznn 12601 |
. . . . . . . . . . 11
⊢
((♯‘𝐴)
∈ ℤ → (((♯‘𝐴) − 1) ∈
(1...(♯‘𝐴))
↔ (((♯‘𝐴)
− 1) ∈ ℕ ∧ ((♯‘𝐴) − 1) ≤ (♯‘𝐴)))) |
83 | 22, 82 | syl 17 |
. . . . . . . . . 10
⊢ (𝜑 → (((♯‘𝐴) − 1) ∈
(1...(♯‘𝐴))
↔ (((♯‘𝐴)
− 1) ∈ ℕ ∧ ((♯‘𝐴) − 1) ≤ (♯‘𝐴)))) |
84 | 32, 81, 83 | mpbir2and 995 |
. . . . . . . . 9
⊢ (𝜑 → ((♯‘𝐴) − 1) ∈
(1...(♯‘𝐴))) |
85 | 2, 3, 4, 5, 6, 7 | efgsres 18351 |
. . . . . . . . 9
⊢ ((𝐴 ∈ dom 𝑆 ∧ ((♯‘𝐴) − 1) ∈
(1...(♯‘𝐴)))
→ (𝐴 ↾
(0..^((♯‘𝐴)
− 1))) ∈ dom 𝑆) |
86 | 12, 84, 85 | syl2anc 696 |
. . . . . . . 8
⊢ (𝜑 → (𝐴 ↾ (0..^((♯‘𝐴) − 1))) ∈ dom 𝑆) |
87 | 2, 3, 4, 5, 6, 7 | efgsval 18344 |
. . . . . . . 8
⊢ ((𝐴 ↾
(0..^((♯‘𝐴)
− 1))) ∈ dom 𝑆
→ (𝑆‘(𝐴 ↾
(0..^((♯‘𝐴)
− 1)))) = ((𝐴 ↾
(0..^((♯‘𝐴)
− 1)))‘((♯‘(𝐴 ↾ (0..^((♯‘𝐴) − 1)))) −
1))) |
88 | 86, 87 | syl 17 |
. . . . . . 7
⊢ (𝜑 → (𝑆‘(𝐴 ↾ (0..^((♯‘𝐴) − 1)))) = ((𝐴 ↾
(0..^((♯‘𝐴)
− 1)))‘((♯‘(𝐴 ↾ (0..^((♯‘𝐴) − 1)))) −
1))) |
89 | | fz1ssfz0 12629 |
. . . . . . . . . . . . . 14
⊢
(1...(♯‘𝐴)) ⊆ (0...(♯‘𝐴)) |
90 | 89, 84 | sseldi 3742 |
. . . . . . . . . . . . 13
⊢ (𝜑 → ((♯‘𝐴) − 1) ∈
(0...(♯‘𝐴))) |
91 | | swrd0val 13620 |
. . . . . . . . . . . . 13
⊢ ((𝐴 ∈ Word 𝑊 ∧ ((♯‘𝐴) − 1) ∈
(0...(♯‘𝐴)))
→ (𝐴 substr 〈0,
((♯‘𝐴) −
1)〉) = (𝐴 ↾
(0..^((♯‘𝐴)
− 1)))) |
92 | 16, 90, 91 | syl2anc 696 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝐴 substr 〈0, ((♯‘𝐴) − 1)〉) = (𝐴 ↾
(0..^((♯‘𝐴)
− 1)))) |
93 | 92 | fveq2d 6356 |
. . . . . . . . . . 11
⊢ (𝜑 → (♯‘(𝐴 substr 〈0,
((♯‘𝐴) −
1)〉)) = (♯‘(𝐴 ↾ (0..^((♯‘𝐴) −
1))))) |
94 | | swrd0len 13621 |
. . . . . . . . . . . 12
⊢ ((𝐴 ∈ Word 𝑊 ∧ ((♯‘𝐴) − 1) ∈
(0...(♯‘𝐴)))
→ (♯‘(𝐴
substr 〈0, ((♯‘𝐴) − 1)〉)) = ((♯‘𝐴) − 1)) |
95 | 16, 90, 94 | syl2anc 696 |
. . . . . . . . . . 11
⊢ (𝜑 → (♯‘(𝐴 substr 〈0,
((♯‘𝐴) −
1)〉)) = ((♯‘𝐴) − 1)) |
96 | 93, 95 | eqtr3d 2796 |
. . . . . . . . . 10
⊢ (𝜑 → (♯‘(𝐴 ↾
(0..^((♯‘𝐴)
− 1)))) = ((♯‘𝐴) − 1)) |
97 | 96 | oveq1d 6828 |
. . . . . . . . 9
⊢ (𝜑 → ((♯‘(𝐴 ↾
(0..^((♯‘𝐴)
− 1)))) − 1) = (((♯‘𝐴) − 1) − 1)) |
98 | 97, 26 | syl6eqr 2812 |
. . . . . . . 8
⊢ (𝜑 → ((♯‘(𝐴 ↾
(0..^((♯‘𝐴)
− 1)))) − 1) = 𝐾) |
99 | 98 | fveq2d 6356 |
. . . . . . 7
⊢ (𝜑 → ((𝐴 ↾ (0..^((♯‘𝐴) −
1)))‘((♯‘(𝐴 ↾ (0..^((♯‘𝐴) − 1)))) − 1)) =
((𝐴 ↾
(0..^((♯‘𝐴)
− 1)))‘𝐾)) |
100 | | fvres 6368 |
. . . . . . . 8
⊢ (𝐾 ∈
(0..^((♯‘𝐴)
− 1)) → ((𝐴
↾ (0..^((♯‘𝐴) − 1)))‘𝐾) = (𝐴‘𝐾)) |
101 | 35, 100 | syl 17 |
. . . . . . 7
⊢ (𝜑 → ((𝐴 ↾ (0..^((♯‘𝐴) − 1)))‘𝐾) = (𝐴‘𝐾)) |
102 | 88, 99, 101 | 3eqtrd 2798 |
. . . . . 6
⊢ (𝜑 → (𝑆‘(𝐴 ↾ (0..^((♯‘𝐴) − 1)))) = (𝐴‘𝐾)) |
103 | 102 | fveq2d 6356 |
. . . . 5
⊢ (𝜑 → (♯‘(𝑆‘(𝐴 ↾ (0..^((♯‘𝐴) − 1))))) =
(♯‘(𝐴‘𝐾))) |
104 | 2, 3, 4, 5, 6, 7 | efgsdmi 18345 |
. . . . . . . 8
⊢ ((𝐴 ∈ dom 𝑆 ∧ ((♯‘𝐴) − 1) ∈ ℕ) → (𝑆‘𝐴) ∈ ran (𝑇‘(𝐴‘(((♯‘𝐴) − 1) − 1)))) |
105 | 12, 32, 104 | syl2anc 696 |
. . . . . . 7
⊢ (𝜑 → (𝑆‘𝐴) ∈ ran (𝑇‘(𝐴‘(((♯‘𝐴) − 1) − 1)))) |
106 | 26 | fveq2i 6355 |
. . . . . . . . 9
⊢ (𝐴‘𝐾) = (𝐴‘(((♯‘𝐴) − 1) − 1)) |
107 | 106 | fveq2i 6355 |
. . . . . . . 8
⊢ (𝑇‘(𝐴‘𝐾)) = (𝑇‘(𝐴‘(((♯‘𝐴) − 1) − 1))) |
108 | 107 | rneqi 5507 |
. . . . . . 7
⊢ ran
(𝑇‘(𝐴‘𝐾)) = ran (𝑇‘(𝐴‘(((♯‘𝐴) − 1) − 1))) |
109 | 105, 108 | syl6eleqr 2850 |
. . . . . 6
⊢ (𝜑 → (𝑆‘𝐴) ∈ ran (𝑇‘(𝐴‘𝐾))) |
110 | 2, 3, 4, 5 | efgtlen 18339 |
. . . . . 6
⊢ (((𝐴‘𝐾) ∈ 𝑊 ∧ (𝑆‘𝐴) ∈ ran (𝑇‘(𝐴‘𝐾))) → (♯‘(𝑆‘𝐴)) = ((♯‘(𝐴‘𝐾)) + 2)) |
111 | 37, 109, 110 | syl2anc 696 |
. . . . 5
⊢ (𝜑 → (♯‘(𝑆‘𝐴)) = ((♯‘(𝐴‘𝐾)) + 2)) |
112 | 79, 103, 111 | 3brtr4d 4836 |
. . . 4
⊢ (𝜑 → (♯‘(𝑆‘(𝐴 ↾ (0..^((♯‘𝐴) − 1))))) <
(♯‘(𝑆‘𝐴))) |
113 | | efgredlemb.p |
. . . . . . . . 9
⊢ (𝜑 → 𝑃 ∈ (0...(♯‘(𝐴‘𝐾)))) |
114 | | efgredlemb.q |
. . . . . . . . 9
⊢ (𝜑 → 𝑄 ∈ (0...(♯‘(𝐵‘𝐿)))) |
115 | | efgredlemb.u |
. . . . . . . . 9
⊢ (𝜑 → 𝑈 ∈ (𝐼 ×
2𝑜)) |
116 | | efgredlemb.v |
. . . . . . . . 9
⊢ (𝜑 → 𝑉 ∈ (𝐼 ×
2𝑜)) |
117 | | efgredlemb.6 |
. . . . . . . . 9
⊢ (𝜑 → (𝑆‘𝐴) = (𝑃(𝑇‘(𝐴‘𝐾))𝑈)) |
118 | | efgredlemb.7 |
. . . . . . . . 9
⊢ (𝜑 → (𝑆‘𝐵) = (𝑄(𝑇‘(𝐵‘𝐿))𝑉)) |
119 | | efgredlemb.8 |
. . . . . . . . 9
⊢ (𝜑 → ¬ (𝐴‘𝐾) = (𝐵‘𝐿)) |
120 | | efgredlemd.9 |
. . . . . . . . 9
⊢ (𝜑 → 𝑃 ∈ (ℤ≥‘(𝑄 + 2))) |
121 | | efgredlemd.sc |
. . . . . . . . 9
⊢ (𝜑 → (𝑆‘𝐶) = (((𝐵‘𝐿) substr 〈0, 𝑄〉) ++ ((𝐴‘𝐾) substr 〈(𝑄 + 2), (♯‘(𝐴‘𝐾))〉))) |
122 | 2, 3, 4, 5, 6, 7, 27, 12, 28, 29, 30, 26, 60, 113, 114, 115, 116, 117, 118, 119, 120, 1, 121 | efgredleme 18356 |
. . . . . . . 8
⊢ (𝜑 → ((𝐴‘𝐾) ∈ ran (𝑇‘(𝑆‘𝐶)) ∧ (𝐵‘𝐿) ∈ ran (𝑇‘(𝑆‘𝐶)))) |
123 | 122 | simpld 477 |
. . . . . . 7
⊢ (𝜑 → (𝐴‘𝐾) ∈ ran (𝑇‘(𝑆‘𝐶))) |
124 | 2, 3, 4, 5, 6, 7 | efgsp1 18350 |
. . . . . . 7
⊢ ((𝐶 ∈ dom 𝑆 ∧ (𝐴‘𝐾) ∈ ran (𝑇‘(𝑆‘𝐶))) → (𝐶 ++ 〈“(𝐴‘𝐾)”〉) ∈ dom 𝑆) |
125 | 1, 123, 124 | syl2anc 696 |
. . . . . 6
⊢ (𝜑 → (𝐶 ++ 〈“(𝐴‘𝐾)”〉) ∈ dom 𝑆) |
126 | 2, 3, 4, 5, 6, 7 | efgsval2 18346 |
. . . . . 6
⊢ ((𝐶 ∈ Word 𝑊 ∧ (𝐴‘𝐾) ∈ 𝑊 ∧ (𝐶 ++ 〈“(𝐴‘𝐾)”〉) ∈ dom 𝑆) → (𝑆‘(𝐶 ++ 〈“(𝐴‘𝐾)”〉)) = (𝐴‘𝐾)) |
127 | 11, 37, 125, 126 | syl3anc 1477 |
. . . . 5
⊢ (𝜑 → (𝑆‘(𝐶 ++ 〈“(𝐴‘𝐾)”〉)) = (𝐴‘𝐾)) |
128 | 102, 127 | eqtr4d 2797 |
. . . 4
⊢ (𝜑 → (𝑆‘(𝐴 ↾ (0..^((♯‘𝐴) − 1)))) = (𝑆‘(𝐶 ++ 〈“(𝐴‘𝐾)”〉))) |
129 | | fveq2 6352 |
. . . . . . . . 9
⊢ (𝑎 = (𝐴 ↾ (0..^((♯‘𝐴) − 1))) → (𝑆‘𝑎) = (𝑆‘(𝐴 ↾ (0..^((♯‘𝐴) −
1))))) |
130 | 129 | fveq2d 6356 |
. . . . . . . 8
⊢ (𝑎 = (𝐴 ↾ (0..^((♯‘𝐴) − 1))) →
(♯‘(𝑆‘𝑎)) = (♯‘(𝑆‘(𝐴 ↾ (0..^((♯‘𝐴) −
1)))))) |
131 | 130 | breq1d 4814 |
. . . . . . 7
⊢ (𝑎 = (𝐴 ↾ (0..^((♯‘𝐴) − 1))) →
((♯‘(𝑆‘𝑎)) < (♯‘(𝑆‘𝐴)) ↔ (♯‘(𝑆‘(𝐴 ↾ (0..^((♯‘𝐴) − 1))))) <
(♯‘(𝑆‘𝐴)))) |
132 | 129 | eqeq1d 2762 |
. . . . . . . 8
⊢ (𝑎 = (𝐴 ↾ (0..^((♯‘𝐴) − 1))) → ((𝑆‘𝑎) = (𝑆‘𝑏) ↔ (𝑆‘(𝐴 ↾ (0..^((♯‘𝐴) − 1)))) = (𝑆‘𝑏))) |
133 | | fveq1 6351 |
. . . . . . . . 9
⊢ (𝑎 = (𝐴 ↾ (0..^((♯‘𝐴) − 1))) → (𝑎‘0) = ((𝐴 ↾ (0..^((♯‘𝐴) −
1)))‘0)) |
134 | 133 | eqeq1d 2762 |
. . . . . . . 8
⊢ (𝑎 = (𝐴 ↾ (0..^((♯‘𝐴) − 1))) → ((𝑎‘0) = (𝑏‘0) ↔ ((𝐴 ↾ (0..^((♯‘𝐴) − 1)))‘0) = (𝑏‘0))) |
135 | 132, 134 | imbi12d 333 |
. . . . . . 7
⊢ (𝑎 = (𝐴 ↾ (0..^((♯‘𝐴) − 1))) → (((𝑆‘𝑎) = (𝑆‘𝑏) → (𝑎‘0) = (𝑏‘0)) ↔ ((𝑆‘(𝐴 ↾ (0..^((♯‘𝐴) − 1)))) = (𝑆‘𝑏) → ((𝐴 ↾ (0..^((♯‘𝐴) − 1)))‘0) = (𝑏‘0)))) |
136 | 131, 135 | imbi12d 333 |
. . . . . 6
⊢ (𝑎 = (𝐴 ↾ (0..^((♯‘𝐴) − 1))) →
(((♯‘(𝑆‘𝑎)) < (♯‘(𝑆‘𝐴)) → ((𝑆‘𝑎) = (𝑆‘𝑏) → (𝑎‘0) = (𝑏‘0))) ↔ ((♯‘(𝑆‘(𝐴 ↾ (0..^((♯‘𝐴) − 1))))) <
(♯‘(𝑆‘𝐴)) → ((𝑆‘(𝐴 ↾ (0..^((♯‘𝐴) − 1)))) = (𝑆‘𝑏) → ((𝐴 ↾ (0..^((♯‘𝐴) − 1)))‘0) = (𝑏‘0))))) |
137 | | fveq2 6352 |
. . . . . . . . 9
⊢ (𝑏 = (𝐶 ++ 〈“(𝐴‘𝐾)”〉) → (𝑆‘𝑏) = (𝑆‘(𝐶 ++ 〈“(𝐴‘𝐾)”〉))) |
138 | 137 | eqeq2d 2770 |
. . . . . . . 8
⊢ (𝑏 = (𝐶 ++ 〈“(𝐴‘𝐾)”〉) → ((𝑆‘(𝐴 ↾ (0..^((♯‘𝐴) − 1)))) = (𝑆‘𝑏) ↔ (𝑆‘(𝐴 ↾ (0..^((♯‘𝐴) − 1)))) = (𝑆‘(𝐶 ++ 〈“(𝐴‘𝐾)”〉)))) |
139 | | fveq1 6351 |
. . . . . . . . 9
⊢ (𝑏 = (𝐶 ++ 〈“(𝐴‘𝐾)”〉) → (𝑏‘0) = ((𝐶 ++ 〈“(𝐴‘𝐾)”〉)‘0)) |
140 | 139 | eqeq2d 2770 |
. . . . . . . 8
⊢ (𝑏 = (𝐶 ++ 〈“(𝐴‘𝐾)”〉) → (((𝐴 ↾ (0..^((♯‘𝐴) − 1)))‘0) = (𝑏‘0) ↔ ((𝐴 ↾
(0..^((♯‘𝐴)
− 1)))‘0) = ((𝐶
++ 〈“(𝐴‘𝐾)”〉)‘0))) |
141 | 138, 140 | imbi12d 333 |
. . . . . . 7
⊢ (𝑏 = (𝐶 ++ 〈“(𝐴‘𝐾)”〉) → (((𝑆‘(𝐴 ↾ (0..^((♯‘𝐴) − 1)))) = (𝑆‘𝑏) → ((𝐴 ↾ (0..^((♯‘𝐴) − 1)))‘0) = (𝑏‘0)) ↔ ((𝑆‘(𝐴 ↾ (0..^((♯‘𝐴) − 1)))) = (𝑆‘(𝐶 ++ 〈“(𝐴‘𝐾)”〉)) → ((𝐴 ↾ (0..^((♯‘𝐴) − 1)))‘0) =
((𝐶 ++ 〈“(𝐴‘𝐾)”〉)‘0)))) |
142 | 141 | imbi2d 329 |
. . . . . 6
⊢ (𝑏 = (𝐶 ++ 〈“(𝐴‘𝐾)”〉) →
(((♯‘(𝑆‘(𝐴 ↾ (0..^((♯‘𝐴) − 1))))) <
(♯‘(𝑆‘𝐴)) → ((𝑆‘(𝐴 ↾ (0..^((♯‘𝐴) − 1)))) = (𝑆‘𝑏) → ((𝐴 ↾ (0..^((♯‘𝐴) − 1)))‘0) = (𝑏‘0))) ↔
((♯‘(𝑆‘(𝐴 ↾ (0..^((♯‘𝐴) − 1))))) <
(♯‘(𝑆‘𝐴)) → ((𝑆‘(𝐴 ↾ (0..^((♯‘𝐴) − 1)))) = (𝑆‘(𝐶 ++ 〈“(𝐴‘𝐾)”〉)) → ((𝐴 ↾ (0..^((♯‘𝐴) − 1)))‘0) =
((𝐶 ++ 〈“(𝐴‘𝐾)”〉)‘0))))) |
143 | 136, 142 | rspc2va 3462 |
. . . . 5
⊢ ((((𝐴 ↾
(0..^((♯‘𝐴)
− 1))) ∈ dom 𝑆
∧ (𝐶 ++
〈“(𝐴‘𝐾)”〉) ∈ dom 𝑆) ∧ ∀𝑎 ∈ dom 𝑆∀𝑏 ∈ dom 𝑆((♯‘(𝑆‘𝑎)) < (♯‘(𝑆‘𝐴)) → ((𝑆‘𝑎) = (𝑆‘𝑏) → (𝑎‘0) = (𝑏‘0)))) → ((♯‘(𝑆‘(𝐴 ↾ (0..^((♯‘𝐴) − 1))))) <
(♯‘(𝑆‘𝐴)) → ((𝑆‘(𝐴 ↾ (0..^((♯‘𝐴) − 1)))) = (𝑆‘(𝐶 ++ 〈“(𝐴‘𝐾)”〉)) → ((𝐴 ↾ (0..^((♯‘𝐴) − 1)))‘0) =
((𝐶 ++ 〈“(𝐴‘𝐾)”〉)‘0)))) |
144 | 86, 125, 27, 143 | syl21anc 1476 |
. . . 4
⊢ (𝜑 → ((♯‘(𝑆‘(𝐴 ↾ (0..^((♯‘𝐴) − 1))))) <
(♯‘(𝑆‘𝐴)) → ((𝑆‘(𝐴 ↾ (0..^((♯‘𝐴) − 1)))) = (𝑆‘(𝐶 ++ 〈“(𝐴‘𝐾)”〉)) → ((𝐴 ↾ (0..^((♯‘𝐴) − 1)))‘0) =
((𝐶 ++ 〈“(𝐴‘𝐾)”〉)‘0)))) |
145 | 112, 128,
144 | mp2d 49 |
. . 3
⊢ (𝜑 → ((𝐴 ↾ (0..^((♯‘𝐴) − 1)))‘0) =
((𝐶 ++ 〈“(𝐴‘𝐾)”〉)‘0)) |
146 | 72, 66 | sseldi 3742 |
. . . . . . . 8
⊢ (𝜑 → (𝐵‘𝐿) ∈ Word (𝐼 ×
2𝑜)) |
147 | | lencl 13510 |
. . . . . . . 8
⊢ ((𝐵‘𝐿) ∈ Word (𝐼 × 2𝑜) →
(♯‘(𝐵‘𝐿)) ∈
ℕ0) |
148 | 146, 147 | syl 17 |
. . . . . . 7
⊢ (𝜑 → (♯‘(𝐵‘𝐿)) ∈
ℕ0) |
149 | 148 | nn0red 11544 |
. . . . . 6
⊢ (𝜑 → (♯‘(𝐵‘𝐿)) ∈ ℝ) |
150 | | ltaddrp 12060 |
. . . . . 6
⊢
(((♯‘(𝐵‘𝐿)) ∈ ℝ ∧ 2 ∈
ℝ+) → (♯‘(𝐵‘𝐿)) < ((♯‘(𝐵‘𝐿)) + 2)) |
151 | 149, 77, 150 | sylancl 697 |
. . . . 5
⊢ (𝜑 → (♯‘(𝐵‘𝐿)) < ((♯‘(𝐵‘𝐿)) + 2)) |
152 | 55 | nn0red 11544 |
. . . . . . . . . . 11
⊢ (𝜑 → (♯‘𝐵) ∈
ℝ) |
153 | 152 | lem1d 11149 |
. . . . . . . . . 10
⊢ (𝜑 → ((♯‘𝐵) − 1) ≤
(♯‘𝐵)) |
154 | | fznn 12601 |
. . . . . . . . . . 11
⊢
((♯‘𝐵)
∈ ℤ → (((♯‘𝐵) − 1) ∈
(1...(♯‘𝐵))
↔ (((♯‘𝐵)
− 1) ∈ ℕ ∧ ((♯‘𝐵) − 1) ≤ (♯‘𝐵)))) |
155 | 56, 154 | syl 17 |
. . . . . . . . . 10
⊢ (𝜑 → (((♯‘𝐵) − 1) ∈
(1...(♯‘𝐵))
↔ (((♯‘𝐵)
− 1) ∈ ℕ ∧ ((♯‘𝐵) − 1) ≤ (♯‘𝐵)))) |
156 | 61, 153, 155 | mpbir2and 995 |
. . . . . . . . 9
⊢ (𝜑 → ((♯‘𝐵) − 1) ∈
(1...(♯‘𝐵))) |
157 | 2, 3, 4, 5, 6, 7 | efgsres 18351 |
. . . . . . . . 9
⊢ ((𝐵 ∈ dom 𝑆 ∧ ((♯‘𝐵) − 1) ∈
(1...(♯‘𝐵)))
→ (𝐵 ↾
(0..^((♯‘𝐵)
− 1))) ∈ dom 𝑆) |
158 | 28, 156, 157 | syl2anc 696 |
. . . . . . . 8
⊢ (𝜑 → (𝐵 ↾ (0..^((♯‘𝐵) − 1))) ∈ dom 𝑆) |
159 | 2, 3, 4, 5, 6, 7 | efgsval 18344 |
. . . . . . . 8
⊢ ((𝐵 ↾
(0..^((♯‘𝐵)
− 1))) ∈ dom 𝑆
→ (𝑆‘(𝐵 ↾
(0..^((♯‘𝐵)
− 1)))) = ((𝐵 ↾
(0..^((♯‘𝐵)
− 1)))‘((♯‘(𝐵 ↾ (0..^((♯‘𝐵) − 1)))) −
1))) |
160 | 158, 159 | syl 17 |
. . . . . . 7
⊢ (𝜑 → (𝑆‘(𝐵 ↾ (0..^((♯‘𝐵) − 1)))) = ((𝐵 ↾
(0..^((♯‘𝐵)
− 1)))‘((♯‘(𝐵 ↾ (0..^((♯‘𝐵) − 1)))) −
1))) |
161 | | fz1ssfz0 12629 |
. . . . . . . . . . . . . 14
⊢
(1...(♯‘𝐵)) ⊆ (0...(♯‘𝐵)) |
162 | 161, 156 | sseldi 3742 |
. . . . . . . . . . . . 13
⊢ (𝜑 → ((♯‘𝐵) − 1) ∈
(0...(♯‘𝐵))) |
163 | | swrd0val 13620 |
. . . . . . . . . . . . 13
⊢ ((𝐵 ∈ Word 𝑊 ∧ ((♯‘𝐵) − 1) ∈
(0...(♯‘𝐵)))
→ (𝐵 substr 〈0,
((♯‘𝐵) −
1)〉) = (𝐵 ↾
(0..^((♯‘𝐵)
− 1)))) |
164 | 50, 162, 163 | syl2anc 696 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝐵 substr 〈0, ((♯‘𝐵) − 1)〉) = (𝐵 ↾
(0..^((♯‘𝐵)
− 1)))) |
165 | 164 | fveq2d 6356 |
. . . . . . . . . . 11
⊢ (𝜑 → (♯‘(𝐵 substr 〈0,
((♯‘𝐵) −
1)〉)) = (♯‘(𝐵 ↾ (0..^((♯‘𝐵) −
1))))) |
166 | | swrd0len 13621 |
. . . . . . . . . . . 12
⊢ ((𝐵 ∈ Word 𝑊 ∧ ((♯‘𝐵) − 1) ∈
(0...(♯‘𝐵)))
→ (♯‘(𝐵
substr 〈0, ((♯‘𝐵) − 1)〉)) = ((♯‘𝐵) − 1)) |
167 | 50, 162, 166 | syl2anc 696 |
. . . . . . . . . . 11
⊢ (𝜑 → (♯‘(𝐵 substr 〈0,
((♯‘𝐵) −
1)〉)) = ((♯‘𝐵) − 1)) |
168 | 165, 167 | eqtr3d 2796 |
. . . . . . . . . 10
⊢ (𝜑 → (♯‘(𝐵 ↾
(0..^((♯‘𝐵)
− 1)))) = ((♯‘𝐵) − 1)) |
169 | 168 | oveq1d 6828 |
. . . . . . . . 9
⊢ (𝜑 → ((♯‘(𝐵 ↾
(0..^((♯‘𝐵)
− 1)))) − 1) = (((♯‘𝐵) − 1) − 1)) |
170 | 169, 60 | syl6eqr 2812 |
. . . . . . . 8
⊢ (𝜑 → ((♯‘(𝐵 ↾
(0..^((♯‘𝐵)
− 1)))) − 1) = 𝐿) |
171 | 170 | fveq2d 6356 |
. . . . . . 7
⊢ (𝜑 → ((𝐵 ↾ (0..^((♯‘𝐵) −
1)))‘((♯‘(𝐵 ↾ (0..^((♯‘𝐵) − 1)))) − 1)) =
((𝐵 ↾
(0..^((♯‘𝐵)
− 1)))‘𝐿)) |
172 | | fvres 6368 |
. . . . . . . 8
⊢ (𝐿 ∈
(0..^((♯‘𝐵)
− 1)) → ((𝐵
↾ (0..^((♯‘𝐵) − 1)))‘𝐿) = (𝐵‘𝐿)) |
173 | 64, 172 | syl 17 |
. . . . . . 7
⊢ (𝜑 → ((𝐵 ↾ (0..^((♯‘𝐵) − 1)))‘𝐿) = (𝐵‘𝐿)) |
174 | 160, 171,
173 | 3eqtrd 2798 |
. . . . . 6
⊢ (𝜑 → (𝑆‘(𝐵 ↾ (0..^((♯‘𝐵) − 1)))) = (𝐵‘𝐿)) |
175 | 174 | fveq2d 6356 |
. . . . 5
⊢ (𝜑 → (♯‘(𝑆‘(𝐵 ↾ (0..^((♯‘𝐵) − 1))))) =
(♯‘(𝐵‘𝐿))) |
176 | 2, 3, 4, 5, 6, 7 | efgsdmi 18345 |
. . . . . . . . 9
⊢ ((𝐵 ∈ dom 𝑆 ∧ ((♯‘𝐵) − 1) ∈ ℕ) → (𝑆‘𝐵) ∈ ran (𝑇‘(𝐵‘(((♯‘𝐵) − 1) − 1)))) |
177 | 28, 61, 176 | syl2anc 696 |
. . . . . . . 8
⊢ (𝜑 → (𝑆‘𝐵) ∈ ran (𝑇‘(𝐵‘(((♯‘𝐵) − 1) − 1)))) |
178 | 29, 177 | eqeltrd 2839 |
. . . . . . 7
⊢ (𝜑 → (𝑆‘𝐴) ∈ ran (𝑇‘(𝐵‘(((♯‘𝐵) − 1) − 1)))) |
179 | 60 | fveq2i 6355 |
. . . . . . . . 9
⊢ (𝐵‘𝐿) = (𝐵‘(((♯‘𝐵) − 1) − 1)) |
180 | 179 | fveq2i 6355 |
. . . . . . . 8
⊢ (𝑇‘(𝐵‘𝐿)) = (𝑇‘(𝐵‘(((♯‘𝐵) − 1) − 1))) |
181 | 180 | rneqi 5507 |
. . . . . . 7
⊢ ran
(𝑇‘(𝐵‘𝐿)) = ran (𝑇‘(𝐵‘(((♯‘𝐵) − 1) − 1))) |
182 | 178, 181 | syl6eleqr 2850 |
. . . . . 6
⊢ (𝜑 → (𝑆‘𝐴) ∈ ran (𝑇‘(𝐵‘𝐿))) |
183 | 2, 3, 4, 5 | efgtlen 18339 |
. . . . . 6
⊢ (((𝐵‘𝐿) ∈ 𝑊 ∧ (𝑆‘𝐴) ∈ ran (𝑇‘(𝐵‘𝐿))) → (♯‘(𝑆‘𝐴)) = ((♯‘(𝐵‘𝐿)) + 2)) |
184 | 66, 182, 183 | syl2anc 696 |
. . . . 5
⊢ (𝜑 → (♯‘(𝑆‘𝐴)) = ((♯‘(𝐵‘𝐿)) + 2)) |
185 | 151, 175,
184 | 3brtr4d 4836 |
. . . 4
⊢ (𝜑 → (♯‘(𝑆‘(𝐵 ↾ (0..^((♯‘𝐵) − 1))))) <
(♯‘(𝑆‘𝐴))) |
186 | 122 | simprd 482 |
. . . . . . 7
⊢ (𝜑 → (𝐵‘𝐿) ∈ ran (𝑇‘(𝑆‘𝐶))) |
187 | 2, 3, 4, 5, 6, 7 | efgsp1 18350 |
. . . . . . 7
⊢ ((𝐶 ∈ dom 𝑆 ∧ (𝐵‘𝐿) ∈ ran (𝑇‘(𝑆‘𝐶))) → (𝐶 ++ 〈“(𝐵‘𝐿)”〉) ∈ dom 𝑆) |
188 | 1, 186, 187 | syl2anc 696 |
. . . . . 6
⊢ (𝜑 → (𝐶 ++ 〈“(𝐵‘𝐿)”〉) ∈ dom 𝑆) |
189 | 2, 3, 4, 5, 6, 7 | efgsval2 18346 |
. . . . . 6
⊢ ((𝐶 ∈ Word 𝑊 ∧ (𝐵‘𝐿) ∈ 𝑊 ∧ (𝐶 ++ 〈“(𝐵‘𝐿)”〉) ∈ dom 𝑆) → (𝑆‘(𝐶 ++ 〈“(𝐵‘𝐿)”〉)) = (𝐵‘𝐿)) |
190 | 11, 66, 188, 189 | syl3anc 1477 |
. . . . 5
⊢ (𝜑 → (𝑆‘(𝐶 ++ 〈“(𝐵‘𝐿)”〉)) = (𝐵‘𝐿)) |
191 | 174, 190 | eqtr4d 2797 |
. . . 4
⊢ (𝜑 → (𝑆‘(𝐵 ↾ (0..^((♯‘𝐵) − 1)))) = (𝑆‘(𝐶 ++ 〈“(𝐵‘𝐿)”〉))) |
192 | | fveq2 6352 |
. . . . . . . . 9
⊢ (𝑎 = (𝐵 ↾ (0..^((♯‘𝐵) − 1))) → (𝑆‘𝑎) = (𝑆‘(𝐵 ↾ (0..^((♯‘𝐵) −
1))))) |
193 | 192 | fveq2d 6356 |
. . . . . . . 8
⊢ (𝑎 = (𝐵 ↾ (0..^((♯‘𝐵) − 1))) →
(♯‘(𝑆‘𝑎)) = (♯‘(𝑆‘(𝐵 ↾ (0..^((♯‘𝐵) −
1)))))) |
194 | 193 | breq1d 4814 |
. . . . . . 7
⊢ (𝑎 = (𝐵 ↾ (0..^((♯‘𝐵) − 1))) →
((♯‘(𝑆‘𝑎)) < (♯‘(𝑆‘𝐴)) ↔ (♯‘(𝑆‘(𝐵 ↾ (0..^((♯‘𝐵) − 1))))) <
(♯‘(𝑆‘𝐴)))) |
195 | 192 | eqeq1d 2762 |
. . . . . . . 8
⊢ (𝑎 = (𝐵 ↾ (0..^((♯‘𝐵) − 1))) → ((𝑆‘𝑎) = (𝑆‘𝑏) ↔ (𝑆‘(𝐵 ↾ (0..^((♯‘𝐵) − 1)))) = (𝑆‘𝑏))) |
196 | | fveq1 6351 |
. . . . . . . . 9
⊢ (𝑎 = (𝐵 ↾ (0..^((♯‘𝐵) − 1))) → (𝑎‘0) = ((𝐵 ↾ (0..^((♯‘𝐵) −
1)))‘0)) |
197 | 196 | eqeq1d 2762 |
. . . . . . . 8
⊢ (𝑎 = (𝐵 ↾ (0..^((♯‘𝐵) − 1))) → ((𝑎‘0) = (𝑏‘0) ↔ ((𝐵 ↾ (0..^((♯‘𝐵) − 1)))‘0) = (𝑏‘0))) |
198 | 195, 197 | imbi12d 333 |
. . . . . . 7
⊢ (𝑎 = (𝐵 ↾ (0..^((♯‘𝐵) − 1))) → (((𝑆‘𝑎) = (𝑆‘𝑏) → (𝑎‘0) = (𝑏‘0)) ↔ ((𝑆‘(𝐵 ↾ (0..^((♯‘𝐵) − 1)))) = (𝑆‘𝑏) → ((𝐵 ↾ (0..^((♯‘𝐵) − 1)))‘0) = (𝑏‘0)))) |
199 | 194, 198 | imbi12d 333 |
. . . . . 6
⊢ (𝑎 = (𝐵 ↾ (0..^((♯‘𝐵) − 1))) →
(((♯‘(𝑆‘𝑎)) < (♯‘(𝑆‘𝐴)) → ((𝑆‘𝑎) = (𝑆‘𝑏) → (𝑎‘0) = (𝑏‘0))) ↔ ((♯‘(𝑆‘(𝐵 ↾ (0..^((♯‘𝐵) − 1))))) <
(♯‘(𝑆‘𝐴)) → ((𝑆‘(𝐵 ↾ (0..^((♯‘𝐵) − 1)))) = (𝑆‘𝑏) → ((𝐵 ↾ (0..^((♯‘𝐵) − 1)))‘0) = (𝑏‘0))))) |
200 | | fveq2 6352 |
. . . . . . . . 9
⊢ (𝑏 = (𝐶 ++ 〈“(𝐵‘𝐿)”〉) → (𝑆‘𝑏) = (𝑆‘(𝐶 ++ 〈“(𝐵‘𝐿)”〉))) |
201 | 200 | eqeq2d 2770 |
. . . . . . . 8
⊢ (𝑏 = (𝐶 ++ 〈“(𝐵‘𝐿)”〉) → ((𝑆‘(𝐵 ↾ (0..^((♯‘𝐵) − 1)))) = (𝑆‘𝑏) ↔ (𝑆‘(𝐵 ↾ (0..^((♯‘𝐵) − 1)))) = (𝑆‘(𝐶 ++ 〈“(𝐵‘𝐿)”〉)))) |
202 | | fveq1 6351 |
. . . . . . . . 9
⊢ (𝑏 = (𝐶 ++ 〈“(𝐵‘𝐿)”〉) → (𝑏‘0) = ((𝐶 ++ 〈“(𝐵‘𝐿)”〉)‘0)) |
203 | 202 | eqeq2d 2770 |
. . . . . . . 8
⊢ (𝑏 = (𝐶 ++ 〈“(𝐵‘𝐿)”〉) → (((𝐵 ↾ (0..^((♯‘𝐵) − 1)))‘0) = (𝑏‘0) ↔ ((𝐵 ↾
(0..^((♯‘𝐵)
− 1)))‘0) = ((𝐶
++ 〈“(𝐵‘𝐿)”〉)‘0))) |
204 | 201, 203 | imbi12d 333 |
. . . . . . 7
⊢ (𝑏 = (𝐶 ++ 〈“(𝐵‘𝐿)”〉) → (((𝑆‘(𝐵 ↾ (0..^((♯‘𝐵) − 1)))) = (𝑆‘𝑏) → ((𝐵 ↾ (0..^((♯‘𝐵) − 1)))‘0) = (𝑏‘0)) ↔ ((𝑆‘(𝐵 ↾ (0..^((♯‘𝐵) − 1)))) = (𝑆‘(𝐶 ++ 〈“(𝐵‘𝐿)”〉)) → ((𝐵 ↾ (0..^((♯‘𝐵) − 1)))‘0) =
((𝐶 ++ 〈“(𝐵‘𝐿)”〉)‘0)))) |
205 | 204 | imbi2d 329 |
. . . . . 6
⊢ (𝑏 = (𝐶 ++ 〈“(𝐵‘𝐿)”〉) →
(((♯‘(𝑆‘(𝐵 ↾ (0..^((♯‘𝐵) − 1))))) <
(♯‘(𝑆‘𝐴)) → ((𝑆‘(𝐵 ↾ (0..^((♯‘𝐵) − 1)))) = (𝑆‘𝑏) → ((𝐵 ↾ (0..^((♯‘𝐵) − 1)))‘0) = (𝑏‘0))) ↔
((♯‘(𝑆‘(𝐵 ↾ (0..^((♯‘𝐵) − 1))))) <
(♯‘(𝑆‘𝐴)) → ((𝑆‘(𝐵 ↾ (0..^((♯‘𝐵) − 1)))) = (𝑆‘(𝐶 ++ 〈“(𝐵‘𝐿)”〉)) → ((𝐵 ↾ (0..^((♯‘𝐵) − 1)))‘0) =
((𝐶 ++ 〈“(𝐵‘𝐿)”〉)‘0))))) |
206 | 199, 205 | rspc2va 3462 |
. . . . 5
⊢ ((((𝐵 ↾
(0..^((♯‘𝐵)
− 1))) ∈ dom 𝑆
∧ (𝐶 ++
〈“(𝐵‘𝐿)”〉) ∈ dom 𝑆) ∧ ∀𝑎 ∈ dom 𝑆∀𝑏 ∈ dom 𝑆((♯‘(𝑆‘𝑎)) < (♯‘(𝑆‘𝐴)) → ((𝑆‘𝑎) = (𝑆‘𝑏) → (𝑎‘0) = (𝑏‘0)))) → ((♯‘(𝑆‘(𝐵 ↾ (0..^((♯‘𝐵) − 1))))) <
(♯‘(𝑆‘𝐴)) → ((𝑆‘(𝐵 ↾ (0..^((♯‘𝐵) − 1)))) = (𝑆‘(𝐶 ++ 〈“(𝐵‘𝐿)”〉)) → ((𝐵 ↾ (0..^((♯‘𝐵) − 1)))‘0) =
((𝐶 ++ 〈“(𝐵‘𝐿)”〉)‘0)))) |
207 | 158, 188,
27, 206 | syl21anc 1476 |
. . . 4
⊢ (𝜑 → ((♯‘(𝑆‘(𝐵 ↾ (0..^((♯‘𝐵) − 1))))) <
(♯‘(𝑆‘𝐴)) → ((𝑆‘(𝐵 ↾ (0..^((♯‘𝐵) − 1)))) = (𝑆‘(𝐶 ++ 〈“(𝐵‘𝐿)”〉)) → ((𝐵 ↾ (0..^((♯‘𝐵) − 1)))‘0) =
((𝐶 ++ 〈“(𝐵‘𝐿)”〉)‘0)))) |
208 | 185, 191,
207 | mp2d 49 |
. . 3
⊢ (𝜑 → ((𝐵 ↾ (0..^((♯‘𝐵) − 1)))‘0) =
((𝐶 ++ 〈“(𝐵‘𝐿)”〉)‘0)) |
209 | 70, 145, 208 | 3eqtr4d 2804 |
. 2
⊢ (𝜑 → ((𝐴 ↾ (0..^((♯‘𝐴) − 1)))‘0) =
((𝐵 ↾
(0..^((♯‘𝐵)
− 1)))‘0)) |
210 | | lbfzo0 12702 |
. . . 4
⊢ (0 ∈
(0..^((♯‘𝐴)
− 1)) ↔ ((♯‘𝐴) − 1) ∈
ℕ) |
211 | 32, 210 | sylibr 224 |
. . 3
⊢ (𝜑 → 0 ∈
(0..^((♯‘𝐴)
− 1))) |
212 | | fvres 6368 |
. . 3
⊢ (0 ∈
(0..^((♯‘𝐴)
− 1)) → ((𝐴
↾ (0..^((♯‘𝐴) − 1)))‘0) = (𝐴‘0)) |
213 | 211, 212 | syl 17 |
. 2
⊢ (𝜑 → ((𝐴 ↾ (0..^((♯‘𝐴) − 1)))‘0) = (𝐴‘0)) |
214 | | lbfzo0 12702 |
. . . 4
⊢ (0 ∈
(0..^((♯‘𝐵)
− 1)) ↔ ((♯‘𝐵) − 1) ∈
ℕ) |
215 | 61, 214 | sylibr 224 |
. . 3
⊢ (𝜑 → 0 ∈
(0..^((♯‘𝐵)
− 1))) |
216 | | fvres 6368 |
. . 3
⊢ (0 ∈
(0..^((♯‘𝐵)
− 1)) → ((𝐵
↾ (0..^((♯‘𝐵) − 1)))‘0) = (𝐵‘0)) |
217 | 215, 216 | syl 17 |
. 2
⊢ (𝜑 → ((𝐵 ↾ (0..^((♯‘𝐵) − 1)))‘0) = (𝐵‘0)) |
218 | 209, 213,
217 | 3eqtr3d 2802 |
1
⊢ (𝜑 → (𝐴‘0) = (𝐵‘0)) |