MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  efgred Structured version   Visualization version   GIF version

Theorem efgred 18101
Description: The reduced word that forms the base of the sequence in efgsval 18084 is uniquely determined, given the terminal point. (Contributed by Mario Carneiro, 28-Sep-2015.)
Hypotheses
Ref Expression
efgval.w 𝑊 = ( I ‘Word (𝐼 × 2𝑜))
efgval.r = ( ~FG𝐼)
efgval2.m 𝑀 = (𝑦𝐼, 𝑧 ∈ 2𝑜 ↦ ⟨𝑦, (1𝑜𝑧)⟩)
efgval2.t 𝑇 = (𝑣𝑊 ↦ (𝑛 ∈ (0...(#‘𝑣)), 𝑤 ∈ (𝐼 × 2𝑜) ↦ (𝑣 splice ⟨𝑛, 𝑛, ⟨“𝑤(𝑀𝑤)”⟩⟩)))
efgred.d 𝐷 = (𝑊 𝑥𝑊 ran (𝑇𝑥))
efgred.s 𝑆 = (𝑚 ∈ {𝑡 ∈ (Word 𝑊 ∖ {∅}) ∣ ((𝑡‘0) ∈ 𝐷 ∧ ∀𝑘 ∈ (1..^(#‘𝑡))(𝑡𝑘) ∈ ran (𝑇‘(𝑡‘(𝑘 − 1))))} ↦ (𝑚‘((#‘𝑚) − 1)))
Assertion
Ref Expression
efgred ((𝐴 ∈ dom 𝑆𝐵 ∈ dom 𝑆 ∧ (𝑆𝐴) = (𝑆𝐵)) → (𝐴‘0) = (𝐵‘0))
Distinct variable groups:   𝑦,𝑧   𝑡,𝑛,𝑣,𝑤,𝑦,𝑧,𝑚,𝑥   𝑚,𝑀   𝑥,𝑛,𝑀,𝑡,𝑣,𝑤   𝑘,𝑚,𝑡,𝑥,𝑇   𝑘,𝑛,𝑣,𝑤,𝑦,𝑧,𝑊,𝑚,𝑡,𝑥   ,𝑚,𝑡,𝑥,𝑦,𝑧   𝑚,𝐼,𝑛,𝑡,𝑣,𝑤,𝑥,𝑦,𝑧   𝐷,𝑚,𝑡
Allowed substitution hints:   𝐴(𝑥,𝑦,𝑧,𝑤,𝑣,𝑡,𝑘,𝑚,𝑛)   𝐵(𝑥,𝑦,𝑧,𝑤,𝑣,𝑡,𝑘,𝑚,𝑛)   𝐷(𝑥,𝑦,𝑧,𝑤,𝑣,𝑘,𝑛)   (𝑤,𝑣,𝑘,𝑛)   𝑆(𝑥,𝑦,𝑧,𝑤,𝑣,𝑡,𝑘,𝑚,𝑛)   𝑇(𝑦,𝑧,𝑤,𝑣,𝑛)   𝐼(𝑘)   𝑀(𝑦,𝑧,𝑘)

Proof of Theorem efgred
Dummy variables 𝑎 𝑏 𝑐 𝑑 𝑖 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 efgval.w . . . . . . . 8 𝑊 = ( I ‘Word (𝐼 × 2𝑜))
2 fviss 6223 . . . . . . . 8 ( I ‘Word (𝐼 × 2𝑜)) ⊆ Word (𝐼 × 2𝑜)
31, 2eqsstri 3620 . . . . . . 7 𝑊 ⊆ Word (𝐼 × 2𝑜)
4 efgval.r . . . . . . . . . . 11 = ( ~FG𝐼)
5 efgval2.m . . . . . . . . . . 11 𝑀 = (𝑦𝐼, 𝑧 ∈ 2𝑜 ↦ ⟨𝑦, (1𝑜𝑧)⟩)
6 efgval2.t . . . . . . . . . . 11 𝑇 = (𝑣𝑊 ↦ (𝑛 ∈ (0...(#‘𝑣)), 𝑤 ∈ (𝐼 × 2𝑜) ↦ (𝑣 splice ⟨𝑛, 𝑛, ⟨“𝑤(𝑀𝑤)”⟩⟩)))
7 efgred.d . . . . . . . . . . 11 𝐷 = (𝑊 𝑥𝑊 ran (𝑇𝑥))
8 efgred.s . . . . . . . . . . 11 𝑆 = (𝑚 ∈ {𝑡 ∈ (Word 𝑊 ∖ {∅}) ∣ ((𝑡‘0) ∈ 𝐷 ∧ ∀𝑘 ∈ (1..^(#‘𝑡))(𝑡𝑘) ∈ ran (𝑇‘(𝑡‘(𝑘 − 1))))} ↦ (𝑚‘((#‘𝑚) − 1)))
91, 4, 5, 6, 7, 8efgsf 18082 . . . . . . . . . 10 𝑆:{𝑡 ∈ (Word 𝑊 ∖ {∅}) ∣ ((𝑡‘0) ∈ 𝐷 ∧ ∀𝑘 ∈ (1..^(#‘𝑡))(𝑡𝑘) ∈ ran (𝑇‘(𝑡‘(𝑘 − 1))))}⟶𝑊
109fdmi 6019 . . . . . . . . . . 11 dom 𝑆 = {𝑡 ∈ (Word 𝑊 ∖ {∅}) ∣ ((𝑡‘0) ∈ 𝐷 ∧ ∀𝑘 ∈ (1..^(#‘𝑡))(𝑡𝑘) ∈ ran (𝑇‘(𝑡‘(𝑘 − 1))))}
1110feq2i 6004 . . . . . . . . . 10 (𝑆:dom 𝑆𝑊𝑆:{𝑡 ∈ (Word 𝑊 ∖ {∅}) ∣ ((𝑡‘0) ∈ 𝐷 ∧ ∀𝑘 ∈ (1..^(#‘𝑡))(𝑡𝑘) ∈ ran (𝑇‘(𝑡‘(𝑘 − 1))))}⟶𝑊)
129, 11mpbir 221 . . . . . . . . 9 𝑆:dom 𝑆𝑊
1312ffvelrni 6324 . . . . . . . 8 (𝐴 ∈ dom 𝑆 → (𝑆𝐴) ∈ 𝑊)
1413adantr 481 . . . . . . 7 ((𝐴 ∈ dom 𝑆𝐵 ∈ dom 𝑆) → (𝑆𝐴) ∈ 𝑊)
153, 14sseldi 3586 . . . . . 6 ((𝐴 ∈ dom 𝑆𝐵 ∈ dom 𝑆) → (𝑆𝐴) ∈ Word (𝐼 × 2𝑜))
16 lencl 13279 . . . . . 6 ((𝑆𝐴) ∈ Word (𝐼 × 2𝑜) → (#‘(𝑆𝐴)) ∈ ℕ0)
1715, 16syl 17 . . . . 5 ((𝐴 ∈ dom 𝑆𝐵 ∈ dom 𝑆) → (#‘(𝑆𝐴)) ∈ ℕ0)
18 peano2nn0 11293 . . . . 5 ((#‘(𝑆𝐴)) ∈ ℕ0 → ((#‘(𝑆𝐴)) + 1) ∈ ℕ0)
1917, 18syl 17 . . . 4 ((𝐴 ∈ dom 𝑆𝐵 ∈ dom 𝑆) → ((#‘(𝑆𝐴)) + 1) ∈ ℕ0)
20 breq2 4627 . . . . . . 7 (𝑐 = 0 → ((#‘(𝑆𝑎)) < 𝑐 ↔ (#‘(𝑆𝑎)) < 0))
2120imbi1d 331 . . . . . 6 (𝑐 = 0 → (((#‘(𝑆𝑎)) < 𝑐 → ((𝑆𝑎) = (𝑆𝑏) → (𝑎‘0) = (𝑏‘0))) ↔ ((#‘(𝑆𝑎)) < 0 → ((𝑆𝑎) = (𝑆𝑏) → (𝑎‘0) = (𝑏‘0)))))
22212ralbidv 2985 . . . . 5 (𝑐 = 0 → (∀𝑎 ∈ dom 𝑆𝑏 ∈ dom 𝑆((#‘(𝑆𝑎)) < 𝑐 → ((𝑆𝑎) = (𝑆𝑏) → (𝑎‘0) = (𝑏‘0))) ↔ ∀𝑎 ∈ dom 𝑆𝑏 ∈ dom 𝑆((#‘(𝑆𝑎)) < 0 → ((𝑆𝑎) = (𝑆𝑏) → (𝑎‘0) = (𝑏‘0)))))
23 breq2 4627 . . . . . . 7 (𝑐 = 𝑖 → ((#‘(𝑆𝑎)) < 𝑐 ↔ (#‘(𝑆𝑎)) < 𝑖))
2423imbi1d 331 . . . . . 6 (𝑐 = 𝑖 → (((#‘(𝑆𝑎)) < 𝑐 → ((𝑆𝑎) = (𝑆𝑏) → (𝑎‘0) = (𝑏‘0))) ↔ ((#‘(𝑆𝑎)) < 𝑖 → ((𝑆𝑎) = (𝑆𝑏) → (𝑎‘0) = (𝑏‘0)))))
25242ralbidv 2985 . . . . 5 (𝑐 = 𝑖 → (∀𝑎 ∈ dom 𝑆𝑏 ∈ dom 𝑆((#‘(𝑆𝑎)) < 𝑐 → ((𝑆𝑎) = (𝑆𝑏) → (𝑎‘0) = (𝑏‘0))) ↔ ∀𝑎 ∈ dom 𝑆𝑏 ∈ dom 𝑆((#‘(𝑆𝑎)) < 𝑖 → ((𝑆𝑎) = (𝑆𝑏) → (𝑎‘0) = (𝑏‘0)))))
26 breq2 4627 . . . . . . 7 (𝑐 = (𝑖 + 1) → ((#‘(𝑆𝑎)) < 𝑐 ↔ (#‘(𝑆𝑎)) < (𝑖 + 1)))
2726imbi1d 331 . . . . . 6 (𝑐 = (𝑖 + 1) → (((#‘(𝑆𝑎)) < 𝑐 → ((𝑆𝑎) = (𝑆𝑏) → (𝑎‘0) = (𝑏‘0))) ↔ ((#‘(𝑆𝑎)) < (𝑖 + 1) → ((𝑆𝑎) = (𝑆𝑏) → (𝑎‘0) = (𝑏‘0)))))
28272ralbidv 2985 . . . . 5 (𝑐 = (𝑖 + 1) → (∀𝑎 ∈ dom 𝑆𝑏 ∈ dom 𝑆((#‘(𝑆𝑎)) < 𝑐 → ((𝑆𝑎) = (𝑆𝑏) → (𝑎‘0) = (𝑏‘0))) ↔ ∀𝑎 ∈ dom 𝑆𝑏 ∈ dom 𝑆((#‘(𝑆𝑎)) < (𝑖 + 1) → ((𝑆𝑎) = (𝑆𝑏) → (𝑎‘0) = (𝑏‘0)))))
29 breq2 4627 . . . . . . 7 (𝑐 = ((#‘(𝑆𝐴)) + 1) → ((#‘(𝑆𝑎)) < 𝑐 ↔ (#‘(𝑆𝑎)) < ((#‘(𝑆𝐴)) + 1)))
3029imbi1d 331 . . . . . 6 (𝑐 = ((#‘(𝑆𝐴)) + 1) → (((#‘(𝑆𝑎)) < 𝑐 → ((𝑆𝑎) = (𝑆𝑏) → (𝑎‘0) = (𝑏‘0))) ↔ ((#‘(𝑆𝑎)) < ((#‘(𝑆𝐴)) + 1) → ((𝑆𝑎) = (𝑆𝑏) → (𝑎‘0) = (𝑏‘0)))))
31302ralbidv 2985 . . . . 5 (𝑐 = ((#‘(𝑆𝐴)) + 1) → (∀𝑎 ∈ dom 𝑆𝑏 ∈ dom 𝑆((#‘(𝑆𝑎)) < 𝑐 → ((𝑆𝑎) = (𝑆𝑏) → (𝑎‘0) = (𝑏‘0))) ↔ ∀𝑎 ∈ dom 𝑆𝑏 ∈ dom 𝑆((#‘(𝑆𝑎)) < ((#‘(𝑆𝐴)) + 1) → ((𝑆𝑎) = (𝑆𝑏) → (𝑎‘0) = (𝑏‘0)))))
3212ffvelrni 6324 . . . . . . . . . . 11 (𝑎 ∈ dom 𝑆 → (𝑆𝑎) ∈ 𝑊)
333, 32sseldi 3586 . . . . . . . . . 10 (𝑎 ∈ dom 𝑆 → (𝑆𝑎) ∈ Word (𝐼 × 2𝑜))
34 lencl 13279 . . . . . . . . . 10 ((𝑆𝑎) ∈ Word (𝐼 × 2𝑜) → (#‘(𝑆𝑎)) ∈ ℕ0)
3533, 34syl 17 . . . . . . . . 9 (𝑎 ∈ dom 𝑆 → (#‘(𝑆𝑎)) ∈ ℕ0)
36 nn0nlt0 11279 . . . . . . . . 9 ((#‘(𝑆𝑎)) ∈ ℕ0 → ¬ (#‘(𝑆𝑎)) < 0)
3735, 36syl 17 . . . . . . . 8 (𝑎 ∈ dom 𝑆 → ¬ (#‘(𝑆𝑎)) < 0)
3837pm2.21d 118 . . . . . . 7 (𝑎 ∈ dom 𝑆 → ((#‘(𝑆𝑎)) < 0 → ((𝑆𝑎) = (𝑆𝑏) → (𝑎‘0) = (𝑏‘0))))
3938adantr 481 . . . . . 6 ((𝑎 ∈ dom 𝑆𝑏 ∈ dom 𝑆) → ((#‘(𝑆𝑎)) < 0 → ((𝑆𝑎) = (𝑆𝑏) → (𝑎‘0) = (𝑏‘0))))
4039rgen2a 2973 . . . . 5 𝑎 ∈ dom 𝑆𝑏 ∈ dom 𝑆((#‘(𝑆𝑎)) < 0 → ((𝑆𝑎) = (𝑆𝑏) → (𝑎‘0) = (𝑏‘0)))
41 simpl1 1062 . . . . . . . . . . . . . 14 (((∀𝑎 ∈ dom 𝑆𝑏 ∈ dom 𝑆((#‘(𝑆𝑎)) < 𝑖 → ((𝑆𝑎) = (𝑆𝑏) → (𝑎‘0) = (𝑏‘0))) ∧ (𝑐 ∈ dom 𝑆𝑑 ∈ dom 𝑆) ∧ ((#‘(𝑆𝑐)) = 𝑖 ∧ (𝑆𝑐) = (𝑆𝑑))) ∧ ¬ (𝑐‘0) = (𝑑‘0)) → ∀𝑎 ∈ dom 𝑆𝑏 ∈ dom 𝑆((#‘(𝑆𝑎)) < 𝑖 → ((𝑆𝑎) = (𝑆𝑏) → (𝑎‘0) = (𝑏‘0))))
42 simpl3l 1114 . . . . . . . . . . . . . . 15 (((∀𝑎 ∈ dom 𝑆𝑏 ∈ dom 𝑆((#‘(𝑆𝑎)) < 𝑖 → ((𝑆𝑎) = (𝑆𝑏) → (𝑎‘0) = (𝑏‘0))) ∧ (𝑐 ∈ dom 𝑆𝑑 ∈ dom 𝑆) ∧ ((#‘(𝑆𝑐)) = 𝑖 ∧ (𝑆𝑐) = (𝑆𝑑))) ∧ ¬ (𝑐‘0) = (𝑑‘0)) → (#‘(𝑆𝑐)) = 𝑖)
43 breq2 4627 . . . . . . . . . . . . . . . . 17 ((#‘(𝑆𝑐)) = 𝑖 → ((#‘(𝑆𝑎)) < (#‘(𝑆𝑐)) ↔ (#‘(𝑆𝑎)) < 𝑖))
4443imbi1d 331 . . . . . . . . . . . . . . . 16 ((#‘(𝑆𝑐)) = 𝑖 → (((#‘(𝑆𝑎)) < (#‘(𝑆𝑐)) → ((𝑆𝑎) = (𝑆𝑏) → (𝑎‘0) = (𝑏‘0))) ↔ ((#‘(𝑆𝑎)) < 𝑖 → ((𝑆𝑎) = (𝑆𝑏) → (𝑎‘0) = (𝑏‘0)))))
45442ralbidv 2985 . . . . . . . . . . . . . . 15 ((#‘(𝑆𝑐)) = 𝑖 → (∀𝑎 ∈ dom 𝑆𝑏 ∈ dom 𝑆((#‘(𝑆𝑎)) < (#‘(𝑆𝑐)) → ((𝑆𝑎) = (𝑆𝑏) → (𝑎‘0) = (𝑏‘0))) ↔ ∀𝑎 ∈ dom 𝑆𝑏 ∈ dom 𝑆((#‘(𝑆𝑎)) < 𝑖 → ((𝑆𝑎) = (𝑆𝑏) → (𝑎‘0) = (𝑏‘0)))))
4642, 45syl 17 . . . . . . . . . . . . . 14 (((∀𝑎 ∈ dom 𝑆𝑏 ∈ dom 𝑆((#‘(𝑆𝑎)) < 𝑖 → ((𝑆𝑎) = (𝑆𝑏) → (𝑎‘0) = (𝑏‘0))) ∧ (𝑐 ∈ dom 𝑆𝑑 ∈ dom 𝑆) ∧ ((#‘(𝑆𝑐)) = 𝑖 ∧ (𝑆𝑐) = (𝑆𝑑))) ∧ ¬ (𝑐‘0) = (𝑑‘0)) → (∀𝑎 ∈ dom 𝑆𝑏 ∈ dom 𝑆((#‘(𝑆𝑎)) < (#‘(𝑆𝑐)) → ((𝑆𝑎) = (𝑆𝑏) → (𝑎‘0) = (𝑏‘0))) ↔ ∀𝑎 ∈ dom 𝑆𝑏 ∈ dom 𝑆((#‘(𝑆𝑎)) < 𝑖 → ((𝑆𝑎) = (𝑆𝑏) → (𝑎‘0) = (𝑏‘0)))))
4741, 46mpbird 247 . . . . . . . . . . . . 13 (((∀𝑎 ∈ dom 𝑆𝑏 ∈ dom 𝑆((#‘(𝑆𝑎)) < 𝑖 → ((𝑆𝑎) = (𝑆𝑏) → (𝑎‘0) = (𝑏‘0))) ∧ (𝑐 ∈ dom 𝑆𝑑 ∈ dom 𝑆) ∧ ((#‘(𝑆𝑐)) = 𝑖 ∧ (𝑆𝑐) = (𝑆𝑑))) ∧ ¬ (𝑐‘0) = (𝑑‘0)) → ∀𝑎 ∈ dom 𝑆𝑏 ∈ dom 𝑆((#‘(𝑆𝑎)) < (#‘(𝑆𝑐)) → ((𝑆𝑎) = (𝑆𝑏) → (𝑎‘0) = (𝑏‘0))))
48 simpl2l 1112 . . . . . . . . . . . . 13 (((∀𝑎 ∈ dom 𝑆𝑏 ∈ dom 𝑆((#‘(𝑆𝑎)) < 𝑖 → ((𝑆𝑎) = (𝑆𝑏) → (𝑎‘0) = (𝑏‘0))) ∧ (𝑐 ∈ dom 𝑆𝑑 ∈ dom 𝑆) ∧ ((#‘(𝑆𝑐)) = 𝑖 ∧ (𝑆𝑐) = (𝑆𝑑))) ∧ ¬ (𝑐‘0) = (𝑑‘0)) → 𝑐 ∈ dom 𝑆)
49 simpl2r 1113 . . . . . . . . . . . . 13 (((∀𝑎 ∈ dom 𝑆𝑏 ∈ dom 𝑆((#‘(𝑆𝑎)) < 𝑖 → ((𝑆𝑎) = (𝑆𝑏) → (𝑎‘0) = (𝑏‘0))) ∧ (𝑐 ∈ dom 𝑆𝑑 ∈ dom 𝑆) ∧ ((#‘(𝑆𝑐)) = 𝑖 ∧ (𝑆𝑐) = (𝑆𝑑))) ∧ ¬ (𝑐‘0) = (𝑑‘0)) → 𝑑 ∈ dom 𝑆)
50 simpl3r 1115 . . . . . . . . . . . . 13 (((∀𝑎 ∈ dom 𝑆𝑏 ∈ dom 𝑆((#‘(𝑆𝑎)) < 𝑖 → ((𝑆𝑎) = (𝑆𝑏) → (𝑎‘0) = (𝑏‘0))) ∧ (𝑐 ∈ dom 𝑆𝑑 ∈ dom 𝑆) ∧ ((#‘(𝑆𝑐)) = 𝑖 ∧ (𝑆𝑐) = (𝑆𝑑))) ∧ ¬ (𝑐‘0) = (𝑑‘0)) → (𝑆𝑐) = (𝑆𝑑))
51 simpr 477 . . . . . . . . . . . . 13 (((∀𝑎 ∈ dom 𝑆𝑏 ∈ dom 𝑆((#‘(𝑆𝑎)) < 𝑖 → ((𝑆𝑎) = (𝑆𝑏) → (𝑎‘0) = (𝑏‘0))) ∧ (𝑐 ∈ dom 𝑆𝑑 ∈ dom 𝑆) ∧ ((#‘(𝑆𝑐)) = 𝑖 ∧ (𝑆𝑐) = (𝑆𝑑))) ∧ ¬ (𝑐‘0) = (𝑑‘0)) → ¬ (𝑐‘0) = (𝑑‘0))
521, 4, 5, 6, 7, 8, 47, 48, 49, 50, 51efgredlem 18100 . . . . . . . . . . . 12 ¬ ((∀𝑎 ∈ dom 𝑆𝑏 ∈ dom 𝑆((#‘(𝑆𝑎)) < 𝑖 → ((𝑆𝑎) = (𝑆𝑏) → (𝑎‘0) = (𝑏‘0))) ∧ (𝑐 ∈ dom 𝑆𝑑 ∈ dom 𝑆) ∧ ((#‘(𝑆𝑐)) = 𝑖 ∧ (𝑆𝑐) = (𝑆𝑑))) ∧ ¬ (𝑐‘0) = (𝑑‘0))
53 iman 440 . . . . . . . . . . . 12 (((∀𝑎 ∈ dom 𝑆𝑏 ∈ dom 𝑆((#‘(𝑆𝑎)) < 𝑖 → ((𝑆𝑎) = (𝑆𝑏) → (𝑎‘0) = (𝑏‘0))) ∧ (𝑐 ∈ dom 𝑆𝑑 ∈ dom 𝑆) ∧ ((#‘(𝑆𝑐)) = 𝑖 ∧ (𝑆𝑐) = (𝑆𝑑))) → (𝑐‘0) = (𝑑‘0)) ↔ ¬ ((∀𝑎 ∈ dom 𝑆𝑏 ∈ dom 𝑆((#‘(𝑆𝑎)) < 𝑖 → ((𝑆𝑎) = (𝑆𝑏) → (𝑎‘0) = (𝑏‘0))) ∧ (𝑐 ∈ dom 𝑆𝑑 ∈ dom 𝑆) ∧ ((#‘(𝑆𝑐)) = 𝑖 ∧ (𝑆𝑐) = (𝑆𝑑))) ∧ ¬ (𝑐‘0) = (𝑑‘0)))
5452, 53mpbir 221 . . . . . . . . . . 11 ((∀𝑎 ∈ dom 𝑆𝑏 ∈ dom 𝑆((#‘(𝑆𝑎)) < 𝑖 → ((𝑆𝑎) = (𝑆𝑏) → (𝑎‘0) = (𝑏‘0))) ∧ (𝑐 ∈ dom 𝑆𝑑 ∈ dom 𝑆) ∧ ((#‘(𝑆𝑐)) = 𝑖 ∧ (𝑆𝑐) = (𝑆𝑑))) → (𝑐‘0) = (𝑑‘0))
55543expia 1264 . . . . . . . . . 10 ((∀𝑎 ∈ dom 𝑆𝑏 ∈ dom 𝑆((#‘(𝑆𝑎)) < 𝑖 → ((𝑆𝑎) = (𝑆𝑏) → (𝑎‘0) = (𝑏‘0))) ∧ (𝑐 ∈ dom 𝑆𝑑 ∈ dom 𝑆)) → (((#‘(𝑆𝑐)) = 𝑖 ∧ (𝑆𝑐) = (𝑆𝑑)) → (𝑐‘0) = (𝑑‘0)))
5655expd 452 . . . . . . . . 9 ((∀𝑎 ∈ dom 𝑆𝑏 ∈ dom 𝑆((#‘(𝑆𝑎)) < 𝑖 → ((𝑆𝑎) = (𝑆𝑏) → (𝑎‘0) = (𝑏‘0))) ∧ (𝑐 ∈ dom 𝑆𝑑 ∈ dom 𝑆)) → ((#‘(𝑆𝑐)) = 𝑖 → ((𝑆𝑐) = (𝑆𝑑) → (𝑐‘0) = (𝑑‘0))))
5756ralrimivva 2967 . . . . . . . 8 (∀𝑎 ∈ dom 𝑆𝑏 ∈ dom 𝑆((#‘(𝑆𝑎)) < 𝑖 → ((𝑆𝑎) = (𝑆𝑏) → (𝑎‘0) = (𝑏‘0))) → ∀𝑐 ∈ dom 𝑆𝑑 ∈ dom 𝑆((#‘(𝑆𝑐)) = 𝑖 → ((𝑆𝑐) = (𝑆𝑑) → (𝑐‘0) = (𝑑‘0))))
58 fveq2 6158 . . . . . . . . . . . 12 (𝑐 = 𝑎 → (𝑆𝑐) = (𝑆𝑎))
5958fveq2d 6162 . . . . . . . . . . 11 (𝑐 = 𝑎 → (#‘(𝑆𝑐)) = (#‘(𝑆𝑎)))
6059eqeq1d 2623 . . . . . . . . . 10 (𝑐 = 𝑎 → ((#‘(𝑆𝑐)) = 𝑖 ↔ (#‘(𝑆𝑎)) = 𝑖))
6158eqeq1d 2623 . . . . . . . . . . 11 (𝑐 = 𝑎 → ((𝑆𝑐) = (𝑆𝑑) ↔ (𝑆𝑎) = (𝑆𝑑)))
62 fveq1 6157 . . . . . . . . . . . 12 (𝑐 = 𝑎 → (𝑐‘0) = (𝑎‘0))
6362eqeq1d 2623 . . . . . . . . . . 11 (𝑐 = 𝑎 → ((𝑐‘0) = (𝑑‘0) ↔ (𝑎‘0) = (𝑑‘0)))
6461, 63imbi12d 334 . . . . . . . . . 10 (𝑐 = 𝑎 → (((𝑆𝑐) = (𝑆𝑑) → (𝑐‘0) = (𝑑‘0)) ↔ ((𝑆𝑎) = (𝑆𝑑) → (𝑎‘0) = (𝑑‘0))))
6560, 64imbi12d 334 . . . . . . . . 9 (𝑐 = 𝑎 → (((#‘(𝑆𝑐)) = 𝑖 → ((𝑆𝑐) = (𝑆𝑑) → (𝑐‘0) = (𝑑‘0))) ↔ ((#‘(𝑆𝑎)) = 𝑖 → ((𝑆𝑎) = (𝑆𝑑) → (𝑎‘0) = (𝑑‘0)))))
66 fveq2 6158 . . . . . . . . . . . 12 (𝑑 = 𝑏 → (𝑆𝑑) = (𝑆𝑏))
6766eqeq2d 2631 . . . . . . . . . . 11 (𝑑 = 𝑏 → ((𝑆𝑎) = (𝑆𝑑) ↔ (𝑆𝑎) = (𝑆𝑏)))
68 fveq1 6157 . . . . . . . . . . . 12 (𝑑 = 𝑏 → (𝑑‘0) = (𝑏‘0))
6968eqeq2d 2631 . . . . . . . . . . 11 (𝑑 = 𝑏 → ((𝑎‘0) = (𝑑‘0) ↔ (𝑎‘0) = (𝑏‘0)))
7067, 69imbi12d 334 . . . . . . . . . 10 (𝑑 = 𝑏 → (((𝑆𝑎) = (𝑆𝑑) → (𝑎‘0) = (𝑑‘0)) ↔ ((𝑆𝑎) = (𝑆𝑏) → (𝑎‘0) = (𝑏‘0))))
7170imbi2d 330 . . . . . . . . 9 (𝑑 = 𝑏 → (((#‘(𝑆𝑎)) = 𝑖 → ((𝑆𝑎) = (𝑆𝑑) → (𝑎‘0) = (𝑑‘0))) ↔ ((#‘(𝑆𝑎)) = 𝑖 → ((𝑆𝑎) = (𝑆𝑏) → (𝑎‘0) = (𝑏‘0)))))
7265, 71cbvral2v 3171 . . . . . . . 8 (∀𝑐 ∈ dom 𝑆𝑑 ∈ dom 𝑆((#‘(𝑆𝑐)) = 𝑖 → ((𝑆𝑐) = (𝑆𝑑) → (𝑐‘0) = (𝑑‘0))) ↔ ∀𝑎 ∈ dom 𝑆𝑏 ∈ dom 𝑆((#‘(𝑆𝑎)) = 𝑖 → ((𝑆𝑎) = (𝑆𝑏) → (𝑎‘0) = (𝑏‘0))))
7357, 72sylib 208 . . . . . . 7 (∀𝑎 ∈ dom 𝑆𝑏 ∈ dom 𝑆((#‘(𝑆𝑎)) < 𝑖 → ((𝑆𝑎) = (𝑆𝑏) → (𝑎‘0) = (𝑏‘0))) → ∀𝑎 ∈ dom 𝑆𝑏 ∈ dom 𝑆((#‘(𝑆𝑎)) = 𝑖 → ((𝑆𝑎) = (𝑆𝑏) → (𝑎‘0) = (𝑏‘0))))
7473ancli 573 . . . . . 6 (∀𝑎 ∈ dom 𝑆𝑏 ∈ dom 𝑆((#‘(𝑆𝑎)) < 𝑖 → ((𝑆𝑎) = (𝑆𝑏) → (𝑎‘0) = (𝑏‘0))) → (∀𝑎 ∈ dom 𝑆𝑏 ∈ dom 𝑆((#‘(𝑆𝑎)) < 𝑖 → ((𝑆𝑎) = (𝑆𝑏) → (𝑎‘0) = (𝑏‘0))) ∧ ∀𝑎 ∈ dom 𝑆𝑏 ∈ dom 𝑆((#‘(𝑆𝑎)) = 𝑖 → ((𝑆𝑎) = (𝑆𝑏) → (𝑎‘0) = (𝑏‘0)))))
7535adantr 481 . . . . . . . . . . 11 ((𝑎 ∈ dom 𝑆𝑏 ∈ dom 𝑆) → (#‘(𝑆𝑎)) ∈ ℕ0)
76 nn0leltp1 11396 . . . . . . . . . . . . 13 (((#‘(𝑆𝑎)) ∈ ℕ0𝑖 ∈ ℕ0) → ((#‘(𝑆𝑎)) ≤ 𝑖 ↔ (#‘(𝑆𝑎)) < (𝑖 + 1)))
77 nn0re 11261 . . . . . . . . . . . . . 14 ((#‘(𝑆𝑎)) ∈ ℕ0 → (#‘(𝑆𝑎)) ∈ ℝ)
78 nn0re 11261 . . . . . . . . . . . . . 14 (𝑖 ∈ ℕ0𝑖 ∈ ℝ)
79 leloe 10084 . . . . . . . . . . . . . 14 (((#‘(𝑆𝑎)) ∈ ℝ ∧ 𝑖 ∈ ℝ) → ((#‘(𝑆𝑎)) ≤ 𝑖 ↔ ((#‘(𝑆𝑎)) < 𝑖 ∨ (#‘(𝑆𝑎)) = 𝑖)))
8077, 78, 79syl2an 494 . . . . . . . . . . . . 13 (((#‘(𝑆𝑎)) ∈ ℕ0𝑖 ∈ ℕ0) → ((#‘(𝑆𝑎)) ≤ 𝑖 ↔ ((#‘(𝑆𝑎)) < 𝑖 ∨ (#‘(𝑆𝑎)) = 𝑖)))
8176, 80bitr3d 270 . . . . . . . . . . . 12 (((#‘(𝑆𝑎)) ∈ ℕ0𝑖 ∈ ℕ0) → ((#‘(𝑆𝑎)) < (𝑖 + 1) ↔ ((#‘(𝑆𝑎)) < 𝑖 ∨ (#‘(𝑆𝑎)) = 𝑖)))
8281ancoms 469 . . . . . . . . . . 11 ((𝑖 ∈ ℕ0 ∧ (#‘(𝑆𝑎)) ∈ ℕ0) → ((#‘(𝑆𝑎)) < (𝑖 + 1) ↔ ((#‘(𝑆𝑎)) < 𝑖 ∨ (#‘(𝑆𝑎)) = 𝑖)))
8375, 82sylan2 491 . . . . . . . . . 10 ((𝑖 ∈ ℕ0 ∧ (𝑎 ∈ dom 𝑆𝑏 ∈ dom 𝑆)) → ((#‘(𝑆𝑎)) < (𝑖 + 1) ↔ ((#‘(𝑆𝑎)) < 𝑖 ∨ (#‘(𝑆𝑎)) = 𝑖)))
8483imbi1d 331 . . . . . . . . 9 ((𝑖 ∈ ℕ0 ∧ (𝑎 ∈ dom 𝑆𝑏 ∈ dom 𝑆)) → (((#‘(𝑆𝑎)) < (𝑖 + 1) → ((𝑆𝑎) = (𝑆𝑏) → (𝑎‘0) = (𝑏‘0))) ↔ (((#‘(𝑆𝑎)) < 𝑖 ∨ (#‘(𝑆𝑎)) = 𝑖) → ((𝑆𝑎) = (𝑆𝑏) → (𝑎‘0) = (𝑏‘0)))))
85 jaob 821 . . . . . . . . 9 ((((#‘(𝑆𝑎)) < 𝑖 ∨ (#‘(𝑆𝑎)) = 𝑖) → ((𝑆𝑎) = (𝑆𝑏) → (𝑎‘0) = (𝑏‘0))) ↔ (((#‘(𝑆𝑎)) < 𝑖 → ((𝑆𝑎) = (𝑆𝑏) → (𝑎‘0) = (𝑏‘0))) ∧ ((#‘(𝑆𝑎)) = 𝑖 → ((𝑆𝑎) = (𝑆𝑏) → (𝑎‘0) = (𝑏‘0)))))
8684, 85syl6bb 276 . . . . . . . 8 ((𝑖 ∈ ℕ0 ∧ (𝑎 ∈ dom 𝑆𝑏 ∈ dom 𝑆)) → (((#‘(𝑆𝑎)) < (𝑖 + 1) → ((𝑆𝑎) = (𝑆𝑏) → (𝑎‘0) = (𝑏‘0))) ↔ (((#‘(𝑆𝑎)) < 𝑖 → ((𝑆𝑎) = (𝑆𝑏) → (𝑎‘0) = (𝑏‘0))) ∧ ((#‘(𝑆𝑎)) = 𝑖 → ((𝑆𝑎) = (𝑆𝑏) → (𝑎‘0) = (𝑏‘0))))))
87862ralbidva 2984 . . . . . . 7 (𝑖 ∈ ℕ0 → (∀𝑎 ∈ dom 𝑆𝑏 ∈ dom 𝑆((#‘(𝑆𝑎)) < (𝑖 + 1) → ((𝑆𝑎) = (𝑆𝑏) → (𝑎‘0) = (𝑏‘0))) ↔ ∀𝑎 ∈ dom 𝑆𝑏 ∈ dom 𝑆(((#‘(𝑆𝑎)) < 𝑖 → ((𝑆𝑎) = (𝑆𝑏) → (𝑎‘0) = (𝑏‘0))) ∧ ((#‘(𝑆𝑎)) = 𝑖 → ((𝑆𝑎) = (𝑆𝑏) → (𝑎‘0) = (𝑏‘0))))))
88 r19.26-2 3060 . . . . . . 7 (∀𝑎 ∈ dom 𝑆𝑏 ∈ dom 𝑆(((#‘(𝑆𝑎)) < 𝑖 → ((𝑆𝑎) = (𝑆𝑏) → (𝑎‘0) = (𝑏‘0))) ∧ ((#‘(𝑆𝑎)) = 𝑖 → ((𝑆𝑎) = (𝑆𝑏) → (𝑎‘0) = (𝑏‘0)))) ↔ (∀𝑎 ∈ dom 𝑆𝑏 ∈ dom 𝑆((#‘(𝑆𝑎)) < 𝑖 → ((𝑆𝑎) = (𝑆𝑏) → (𝑎‘0) = (𝑏‘0))) ∧ ∀𝑎 ∈ dom 𝑆𝑏 ∈ dom 𝑆((#‘(𝑆𝑎)) = 𝑖 → ((𝑆𝑎) = (𝑆𝑏) → (𝑎‘0) = (𝑏‘0)))))
8987, 88syl6bb 276 . . . . . 6 (𝑖 ∈ ℕ0 → (∀𝑎 ∈ dom 𝑆𝑏 ∈ dom 𝑆((#‘(𝑆𝑎)) < (𝑖 + 1) → ((𝑆𝑎) = (𝑆𝑏) → (𝑎‘0) = (𝑏‘0))) ↔ (∀𝑎 ∈ dom 𝑆𝑏 ∈ dom 𝑆((#‘(𝑆𝑎)) < 𝑖 → ((𝑆𝑎) = (𝑆𝑏) → (𝑎‘0) = (𝑏‘0))) ∧ ∀𝑎 ∈ dom 𝑆𝑏 ∈ dom 𝑆((#‘(𝑆𝑎)) = 𝑖 → ((𝑆𝑎) = (𝑆𝑏) → (𝑎‘0) = (𝑏‘0))))))
9074, 89syl5ibr 236 . . . . 5 (𝑖 ∈ ℕ0 → (∀𝑎 ∈ dom 𝑆𝑏 ∈ dom 𝑆((#‘(𝑆𝑎)) < 𝑖 → ((𝑆𝑎) = (𝑆𝑏) → (𝑎‘0) = (𝑏‘0))) → ∀𝑎 ∈ dom 𝑆𝑏 ∈ dom 𝑆((#‘(𝑆𝑎)) < (𝑖 + 1) → ((𝑆𝑎) = (𝑆𝑏) → (𝑎‘0) = (𝑏‘0)))))
9122, 25, 28, 31, 40, 90nn0ind 11432 . . . 4 (((#‘(𝑆𝐴)) + 1) ∈ ℕ0 → ∀𝑎 ∈ dom 𝑆𝑏 ∈ dom 𝑆((#‘(𝑆𝑎)) < ((#‘(𝑆𝐴)) + 1) → ((𝑆𝑎) = (𝑆𝑏) → (𝑎‘0) = (𝑏‘0))))
9219, 91syl 17 . . 3 ((𝐴 ∈ dom 𝑆𝐵 ∈ dom 𝑆) → ∀𝑎 ∈ dom 𝑆𝑏 ∈ dom 𝑆((#‘(𝑆𝑎)) < ((#‘(𝑆𝐴)) + 1) → ((𝑆𝑎) = (𝑆𝑏) → (𝑎‘0) = (𝑏‘0))))
9317nn0red 11312 . . . 4 ((𝐴 ∈ dom 𝑆𝐵 ∈ dom 𝑆) → (#‘(𝑆𝐴)) ∈ ℝ)
9493ltp1d 10914 . . 3 ((𝐴 ∈ dom 𝑆𝐵 ∈ dom 𝑆) → (#‘(𝑆𝐴)) < ((#‘(𝑆𝐴)) + 1))
95 fveq2 6158 . . . . . . 7 (𝑎 = 𝐴 → (𝑆𝑎) = (𝑆𝐴))
9695fveq2d 6162 . . . . . 6 (𝑎 = 𝐴 → (#‘(𝑆𝑎)) = (#‘(𝑆𝐴)))
9796breq1d 4633 . . . . 5 (𝑎 = 𝐴 → ((#‘(𝑆𝑎)) < ((#‘(𝑆𝐴)) + 1) ↔ (#‘(𝑆𝐴)) < ((#‘(𝑆𝐴)) + 1)))
9895eqeq1d 2623 . . . . . 6 (𝑎 = 𝐴 → ((𝑆𝑎) = (𝑆𝑏) ↔ (𝑆𝐴) = (𝑆𝑏)))
99 fveq1 6157 . . . . . . 7 (𝑎 = 𝐴 → (𝑎‘0) = (𝐴‘0))
10099eqeq1d 2623 . . . . . 6 (𝑎 = 𝐴 → ((𝑎‘0) = (𝑏‘0) ↔ (𝐴‘0) = (𝑏‘0)))
10198, 100imbi12d 334 . . . . 5 (𝑎 = 𝐴 → (((𝑆𝑎) = (𝑆𝑏) → (𝑎‘0) = (𝑏‘0)) ↔ ((𝑆𝐴) = (𝑆𝑏) → (𝐴‘0) = (𝑏‘0))))
10297, 101imbi12d 334 . . . 4 (𝑎 = 𝐴 → (((#‘(𝑆𝑎)) < ((#‘(𝑆𝐴)) + 1) → ((𝑆𝑎) = (𝑆𝑏) → (𝑎‘0) = (𝑏‘0))) ↔ ((#‘(𝑆𝐴)) < ((#‘(𝑆𝐴)) + 1) → ((𝑆𝐴) = (𝑆𝑏) → (𝐴‘0) = (𝑏‘0)))))
103 fveq2 6158 . . . . . . 7 (𝑏 = 𝐵 → (𝑆𝑏) = (𝑆𝐵))
104103eqeq2d 2631 . . . . . 6 (𝑏 = 𝐵 → ((𝑆𝐴) = (𝑆𝑏) ↔ (𝑆𝐴) = (𝑆𝐵)))
105 fveq1 6157 . . . . . . 7 (𝑏 = 𝐵 → (𝑏‘0) = (𝐵‘0))
106105eqeq2d 2631 . . . . . 6 (𝑏 = 𝐵 → ((𝐴‘0) = (𝑏‘0) ↔ (𝐴‘0) = (𝐵‘0)))
107104, 106imbi12d 334 . . . . 5 (𝑏 = 𝐵 → (((𝑆𝐴) = (𝑆𝑏) → (𝐴‘0) = (𝑏‘0)) ↔ ((𝑆𝐴) = (𝑆𝐵) → (𝐴‘0) = (𝐵‘0))))
108107imbi2d 330 . . . 4 (𝑏 = 𝐵 → (((#‘(𝑆𝐴)) < ((#‘(𝑆𝐴)) + 1) → ((𝑆𝐴) = (𝑆𝑏) → (𝐴‘0) = (𝑏‘0))) ↔ ((#‘(𝑆𝐴)) < ((#‘(𝑆𝐴)) + 1) → ((𝑆𝐴) = (𝑆𝐵) → (𝐴‘0) = (𝐵‘0)))))
109102, 108rspc2v 3311 . . 3 ((𝐴 ∈ dom 𝑆𝐵 ∈ dom 𝑆) → (∀𝑎 ∈ dom 𝑆𝑏 ∈ dom 𝑆((#‘(𝑆𝑎)) < ((#‘(𝑆𝐴)) + 1) → ((𝑆𝑎) = (𝑆𝑏) → (𝑎‘0) = (𝑏‘0))) → ((#‘(𝑆𝐴)) < ((#‘(𝑆𝐴)) + 1) → ((𝑆𝐴) = (𝑆𝐵) → (𝐴‘0) = (𝐵‘0)))))
11092, 94, 109mp2d 49 . 2 ((𝐴 ∈ dom 𝑆𝐵 ∈ dom 𝑆) → ((𝑆𝐴) = (𝑆𝐵) → (𝐴‘0) = (𝐵‘0)))
1111103impia 1258 1 ((𝐴 ∈ dom 𝑆𝐵 ∈ dom 𝑆 ∧ (𝑆𝐴) = (𝑆𝐵)) → (𝐴‘0) = (𝐵‘0))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wo 383  wa 384  w3a 1036   = wceq 1480  wcel 1987  wral 2908  {crab 2912  cdif 3557  c0 3897  {csn 4155  cop 4161  cotp 4163   ciun 4492   class class class wbr 4623  cmpt 4683   I cid 4994   × cxp 5082  dom cdm 5084  ran crn 5085  wf 5853  cfv 5857  (class class class)co 6615  cmpt2 6617  1𝑜c1o 7513  2𝑜c2o 7514  cr 9895  0cc0 9896  1c1 9897   + caddc 9899   < clt 10034  cle 10035  cmin 10226  0cn0 11252  ...cfz 12284  ..^cfzo 12422  #chash 13073  Word cword 13246   splice csplice 13251  ⟨“cs2 13539   ~FG cefg 18059
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4741  ax-sep 4751  ax-nul 4759  ax-pow 4813  ax-pr 4877  ax-un 6914  ax-cnex 9952  ax-resscn 9953  ax-1cn 9954  ax-icn 9955  ax-addcl 9956  ax-addrcl 9957  ax-mulcl 9958  ax-mulrcl 9959  ax-mulcom 9960  ax-addass 9961  ax-mulass 9962  ax-distr 9963  ax-i2m1 9964  ax-1ne0 9965  ax-1rid 9966  ax-rnegex 9967  ax-rrecex 9968  ax-cnre 9969  ax-pre-lttri 9970  ax-pre-lttrn 9971  ax-pre-ltadd 9972  ax-pre-mulgt0 9973
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2913  df-rex 2914  df-reu 2915  df-rab 2917  df-v 3192  df-sbc 3423  df-csb 3520  df-dif 3563  df-un 3565  df-in 3567  df-ss 3574  df-pss 3576  df-nul 3898  df-if 4065  df-pw 4138  df-sn 4156  df-pr 4158  df-tp 4160  df-op 4162  df-ot 4164  df-uni 4410  df-int 4448  df-iun 4494  df-br 4624  df-opab 4684  df-mpt 4685  df-tr 4723  df-eprel 4995  df-id 4999  df-po 5005  df-so 5006  df-fr 5043  df-we 5045  df-xp 5090  df-rel 5091  df-cnv 5092  df-co 5093  df-dm 5094  df-rn 5095  df-res 5096  df-ima 5097  df-pred 5649  df-ord 5695  df-on 5696  df-lim 5697  df-suc 5698  df-iota 5820  df-fun 5859  df-fn 5860  df-f 5861  df-f1 5862  df-fo 5863  df-f1o 5864  df-fv 5865  df-riota 6576  df-ov 6618  df-oprab 6619  df-mpt2 6620  df-om 7028  df-1st 7128  df-2nd 7129  df-wrecs 7367  df-recs 7428  df-rdg 7466  df-1o 7520  df-2o 7521  df-oadd 7524  df-er 7702  df-map 7819  df-pm 7820  df-en 7916  df-dom 7917  df-sdom 7918  df-fin 7919  df-card 8725  df-pnf 10036  df-mnf 10037  df-xr 10038  df-ltxr 10039  df-le 10040  df-sub 10228  df-neg 10229  df-nn 10981  df-2 11039  df-n0 11253  df-z 11338  df-uz 11648  df-rp 11793  df-fz 12285  df-fzo 12423  df-hash 13074  df-word 13254  df-concat 13256  df-s1 13257  df-substr 13258  df-splice 13259  df-s2 13546
This theorem is referenced by:  efgrelexlemb  18103
  Copyright terms: Public domain W3C validator