MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  efgred Structured version   Visualization version   GIF version

Theorem efgred 18367
Description: The reduced word that forms the base of the sequence in efgsval 18350 is uniquely determined, given the terminal point. (Contributed by Mario Carneiro, 28-Sep-2015.)
Hypotheses
Ref Expression
efgval.w 𝑊 = ( I ‘Word (𝐼 × 2𝑜))
efgval.r = ( ~FG𝐼)
efgval2.m 𝑀 = (𝑦𝐼, 𝑧 ∈ 2𝑜 ↦ ⟨𝑦, (1𝑜𝑧)⟩)
efgval2.t 𝑇 = (𝑣𝑊 ↦ (𝑛 ∈ (0...(♯‘𝑣)), 𝑤 ∈ (𝐼 × 2𝑜) ↦ (𝑣 splice ⟨𝑛, 𝑛, ⟨“𝑤(𝑀𝑤)”⟩⟩)))
efgred.d 𝐷 = (𝑊 𝑥𝑊 ran (𝑇𝑥))
efgred.s 𝑆 = (𝑚 ∈ {𝑡 ∈ (Word 𝑊 ∖ {∅}) ∣ ((𝑡‘0) ∈ 𝐷 ∧ ∀𝑘 ∈ (1..^(♯‘𝑡))(𝑡𝑘) ∈ ran (𝑇‘(𝑡‘(𝑘 − 1))))} ↦ (𝑚‘((♯‘𝑚) − 1)))
Assertion
Ref Expression
efgred ((𝐴 ∈ dom 𝑆𝐵 ∈ dom 𝑆 ∧ (𝑆𝐴) = (𝑆𝐵)) → (𝐴‘0) = (𝐵‘0))
Distinct variable groups:   𝑦,𝑧   𝑡,𝑛,𝑣,𝑤,𝑦,𝑧,𝑚,𝑥   𝑚,𝑀   𝑥,𝑛,𝑀,𝑡,𝑣,𝑤   𝑘,𝑚,𝑡,𝑥,𝑇   𝑘,𝑛,𝑣,𝑤,𝑦,𝑧,𝑊,𝑚,𝑡,𝑥   ,𝑚,𝑡,𝑥,𝑦,𝑧   𝑚,𝐼,𝑛,𝑡,𝑣,𝑤,𝑥,𝑦,𝑧   𝐷,𝑚,𝑡
Allowed substitution hints:   𝐴(𝑥,𝑦,𝑧,𝑤,𝑣,𝑡,𝑘,𝑚,𝑛)   𝐵(𝑥,𝑦,𝑧,𝑤,𝑣,𝑡,𝑘,𝑚,𝑛)   𝐷(𝑥,𝑦,𝑧,𝑤,𝑣,𝑘,𝑛)   (𝑤,𝑣,𝑘,𝑛)   𝑆(𝑥,𝑦,𝑧,𝑤,𝑣,𝑡,𝑘,𝑚,𝑛)   𝑇(𝑦,𝑧,𝑤,𝑣,𝑛)   𝐼(𝑘)   𝑀(𝑦,𝑧,𝑘)

Proof of Theorem efgred
Dummy variables 𝑎 𝑏 𝑐 𝑑 𝑖 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 efgval.w . . . . . . . 8 𝑊 = ( I ‘Word (𝐼 × 2𝑜))
2 fviss 6398 . . . . . . . 8 ( I ‘Word (𝐼 × 2𝑜)) ⊆ Word (𝐼 × 2𝑜)
31, 2eqsstri 3782 . . . . . . 7 𝑊 ⊆ Word (𝐼 × 2𝑜)
4 efgval.r . . . . . . . . . . 11 = ( ~FG𝐼)
5 efgval2.m . . . . . . . . . . 11 𝑀 = (𝑦𝐼, 𝑧 ∈ 2𝑜 ↦ ⟨𝑦, (1𝑜𝑧)⟩)
6 efgval2.t . . . . . . . . . . 11 𝑇 = (𝑣𝑊 ↦ (𝑛 ∈ (0...(♯‘𝑣)), 𝑤 ∈ (𝐼 × 2𝑜) ↦ (𝑣 splice ⟨𝑛, 𝑛, ⟨“𝑤(𝑀𝑤)”⟩⟩)))
7 efgred.d . . . . . . . . . . 11 𝐷 = (𝑊 𝑥𝑊 ran (𝑇𝑥))
8 efgred.s . . . . . . . . . . 11 𝑆 = (𝑚 ∈ {𝑡 ∈ (Word 𝑊 ∖ {∅}) ∣ ((𝑡‘0) ∈ 𝐷 ∧ ∀𝑘 ∈ (1..^(♯‘𝑡))(𝑡𝑘) ∈ ran (𝑇‘(𝑡‘(𝑘 − 1))))} ↦ (𝑚‘((♯‘𝑚) − 1)))
91, 4, 5, 6, 7, 8efgsf 18348 . . . . . . . . . 10 𝑆:{𝑡 ∈ (Word 𝑊 ∖ {∅}) ∣ ((𝑡‘0) ∈ 𝐷 ∧ ∀𝑘 ∈ (1..^(♯‘𝑡))(𝑡𝑘) ∈ ran (𝑇‘(𝑡‘(𝑘 − 1))))}⟶𝑊
109fdmi 6192 . . . . . . . . . . 11 dom 𝑆 = {𝑡 ∈ (Word 𝑊 ∖ {∅}) ∣ ((𝑡‘0) ∈ 𝐷 ∧ ∀𝑘 ∈ (1..^(♯‘𝑡))(𝑡𝑘) ∈ ran (𝑇‘(𝑡‘(𝑘 − 1))))}
1110feq2i 6177 . . . . . . . . . 10 (𝑆:dom 𝑆𝑊𝑆:{𝑡 ∈ (Word 𝑊 ∖ {∅}) ∣ ((𝑡‘0) ∈ 𝐷 ∧ ∀𝑘 ∈ (1..^(♯‘𝑡))(𝑡𝑘) ∈ ran (𝑇‘(𝑡‘(𝑘 − 1))))}⟶𝑊)
129, 11mpbir 221 . . . . . . . . 9 𝑆:dom 𝑆𝑊
1312ffvelrni 6501 . . . . . . . 8 (𝐴 ∈ dom 𝑆 → (𝑆𝐴) ∈ 𝑊)
1413adantr 466 . . . . . . 7 ((𝐴 ∈ dom 𝑆𝐵 ∈ dom 𝑆) → (𝑆𝐴) ∈ 𝑊)
153, 14sseldi 3748 . . . . . 6 ((𝐴 ∈ dom 𝑆𝐵 ∈ dom 𝑆) → (𝑆𝐴) ∈ Word (𝐼 × 2𝑜))
16 lencl 13519 . . . . . 6 ((𝑆𝐴) ∈ Word (𝐼 × 2𝑜) → (♯‘(𝑆𝐴)) ∈ ℕ0)
1715, 16syl 17 . . . . 5 ((𝐴 ∈ dom 𝑆𝐵 ∈ dom 𝑆) → (♯‘(𝑆𝐴)) ∈ ℕ0)
18 peano2nn0 11534 . . . . 5 ((♯‘(𝑆𝐴)) ∈ ℕ0 → ((♯‘(𝑆𝐴)) + 1) ∈ ℕ0)
1917, 18syl 17 . . . 4 ((𝐴 ∈ dom 𝑆𝐵 ∈ dom 𝑆) → ((♯‘(𝑆𝐴)) + 1) ∈ ℕ0)
20 breq2 4788 . . . . . . 7 (𝑐 = 0 → ((♯‘(𝑆𝑎)) < 𝑐 ↔ (♯‘(𝑆𝑎)) < 0))
2120imbi1d 330 . . . . . 6 (𝑐 = 0 → (((♯‘(𝑆𝑎)) < 𝑐 → ((𝑆𝑎) = (𝑆𝑏) → (𝑎‘0) = (𝑏‘0))) ↔ ((♯‘(𝑆𝑎)) < 0 → ((𝑆𝑎) = (𝑆𝑏) → (𝑎‘0) = (𝑏‘0)))))
22212ralbidv 3137 . . . . 5 (𝑐 = 0 → (∀𝑎 ∈ dom 𝑆𝑏 ∈ dom 𝑆((♯‘(𝑆𝑎)) < 𝑐 → ((𝑆𝑎) = (𝑆𝑏) → (𝑎‘0) = (𝑏‘0))) ↔ ∀𝑎 ∈ dom 𝑆𝑏 ∈ dom 𝑆((♯‘(𝑆𝑎)) < 0 → ((𝑆𝑎) = (𝑆𝑏) → (𝑎‘0) = (𝑏‘0)))))
23 breq2 4788 . . . . . . 7 (𝑐 = 𝑖 → ((♯‘(𝑆𝑎)) < 𝑐 ↔ (♯‘(𝑆𝑎)) < 𝑖))
2423imbi1d 330 . . . . . 6 (𝑐 = 𝑖 → (((♯‘(𝑆𝑎)) < 𝑐 → ((𝑆𝑎) = (𝑆𝑏) → (𝑎‘0) = (𝑏‘0))) ↔ ((♯‘(𝑆𝑎)) < 𝑖 → ((𝑆𝑎) = (𝑆𝑏) → (𝑎‘0) = (𝑏‘0)))))
25242ralbidv 3137 . . . . 5 (𝑐 = 𝑖 → (∀𝑎 ∈ dom 𝑆𝑏 ∈ dom 𝑆((♯‘(𝑆𝑎)) < 𝑐 → ((𝑆𝑎) = (𝑆𝑏) → (𝑎‘0) = (𝑏‘0))) ↔ ∀𝑎 ∈ dom 𝑆𝑏 ∈ dom 𝑆((♯‘(𝑆𝑎)) < 𝑖 → ((𝑆𝑎) = (𝑆𝑏) → (𝑎‘0) = (𝑏‘0)))))
26 breq2 4788 . . . . . . 7 (𝑐 = (𝑖 + 1) → ((♯‘(𝑆𝑎)) < 𝑐 ↔ (♯‘(𝑆𝑎)) < (𝑖 + 1)))
2726imbi1d 330 . . . . . 6 (𝑐 = (𝑖 + 1) → (((♯‘(𝑆𝑎)) < 𝑐 → ((𝑆𝑎) = (𝑆𝑏) → (𝑎‘0) = (𝑏‘0))) ↔ ((♯‘(𝑆𝑎)) < (𝑖 + 1) → ((𝑆𝑎) = (𝑆𝑏) → (𝑎‘0) = (𝑏‘0)))))
28272ralbidv 3137 . . . . 5 (𝑐 = (𝑖 + 1) → (∀𝑎 ∈ dom 𝑆𝑏 ∈ dom 𝑆((♯‘(𝑆𝑎)) < 𝑐 → ((𝑆𝑎) = (𝑆𝑏) → (𝑎‘0) = (𝑏‘0))) ↔ ∀𝑎 ∈ dom 𝑆𝑏 ∈ dom 𝑆((♯‘(𝑆𝑎)) < (𝑖 + 1) → ((𝑆𝑎) = (𝑆𝑏) → (𝑎‘0) = (𝑏‘0)))))
29 breq2 4788 . . . . . . 7 (𝑐 = ((♯‘(𝑆𝐴)) + 1) → ((♯‘(𝑆𝑎)) < 𝑐 ↔ (♯‘(𝑆𝑎)) < ((♯‘(𝑆𝐴)) + 1)))
3029imbi1d 330 . . . . . 6 (𝑐 = ((♯‘(𝑆𝐴)) + 1) → (((♯‘(𝑆𝑎)) < 𝑐 → ((𝑆𝑎) = (𝑆𝑏) → (𝑎‘0) = (𝑏‘0))) ↔ ((♯‘(𝑆𝑎)) < ((♯‘(𝑆𝐴)) + 1) → ((𝑆𝑎) = (𝑆𝑏) → (𝑎‘0) = (𝑏‘0)))))
31302ralbidv 3137 . . . . 5 (𝑐 = ((♯‘(𝑆𝐴)) + 1) → (∀𝑎 ∈ dom 𝑆𝑏 ∈ dom 𝑆((♯‘(𝑆𝑎)) < 𝑐 → ((𝑆𝑎) = (𝑆𝑏) → (𝑎‘0) = (𝑏‘0))) ↔ ∀𝑎 ∈ dom 𝑆𝑏 ∈ dom 𝑆((♯‘(𝑆𝑎)) < ((♯‘(𝑆𝐴)) + 1) → ((𝑆𝑎) = (𝑆𝑏) → (𝑎‘0) = (𝑏‘0)))))
3212ffvelrni 6501 . . . . . . . . . . 11 (𝑎 ∈ dom 𝑆 → (𝑆𝑎) ∈ 𝑊)
333, 32sseldi 3748 . . . . . . . . . 10 (𝑎 ∈ dom 𝑆 → (𝑆𝑎) ∈ Word (𝐼 × 2𝑜))
34 lencl 13519 . . . . . . . . . 10 ((𝑆𝑎) ∈ Word (𝐼 × 2𝑜) → (♯‘(𝑆𝑎)) ∈ ℕ0)
3533, 34syl 17 . . . . . . . . 9 (𝑎 ∈ dom 𝑆 → (♯‘(𝑆𝑎)) ∈ ℕ0)
36 nn0nlt0 11520 . . . . . . . . 9 ((♯‘(𝑆𝑎)) ∈ ℕ0 → ¬ (♯‘(𝑆𝑎)) < 0)
3735, 36syl 17 . . . . . . . 8 (𝑎 ∈ dom 𝑆 → ¬ (♯‘(𝑆𝑎)) < 0)
3837pm2.21d 119 . . . . . . 7 (𝑎 ∈ dom 𝑆 → ((♯‘(𝑆𝑎)) < 0 → ((𝑆𝑎) = (𝑆𝑏) → (𝑎‘0) = (𝑏‘0))))
3938adantr 466 . . . . . 6 ((𝑎 ∈ dom 𝑆𝑏 ∈ dom 𝑆) → ((♯‘(𝑆𝑎)) < 0 → ((𝑆𝑎) = (𝑆𝑏) → (𝑎‘0) = (𝑏‘0))))
4039rgen2a 3125 . . . . 5 𝑎 ∈ dom 𝑆𝑏 ∈ dom 𝑆((♯‘(𝑆𝑎)) < 0 → ((𝑆𝑎) = (𝑆𝑏) → (𝑎‘0) = (𝑏‘0)))
41 simpl1 1226 . . . . . . . . . . . . . 14 (((∀𝑎 ∈ dom 𝑆𝑏 ∈ dom 𝑆((♯‘(𝑆𝑎)) < 𝑖 → ((𝑆𝑎) = (𝑆𝑏) → (𝑎‘0) = (𝑏‘0))) ∧ (𝑐 ∈ dom 𝑆𝑑 ∈ dom 𝑆) ∧ ((♯‘(𝑆𝑐)) = 𝑖 ∧ (𝑆𝑐) = (𝑆𝑑))) ∧ ¬ (𝑐‘0) = (𝑑‘0)) → ∀𝑎 ∈ dom 𝑆𝑏 ∈ dom 𝑆((♯‘(𝑆𝑎)) < 𝑖 → ((𝑆𝑎) = (𝑆𝑏) → (𝑎‘0) = (𝑏‘0))))
42 simpl3l 1285 . . . . . . . . . . . . . . 15 (((∀𝑎 ∈ dom 𝑆𝑏 ∈ dom 𝑆((♯‘(𝑆𝑎)) < 𝑖 → ((𝑆𝑎) = (𝑆𝑏) → (𝑎‘0) = (𝑏‘0))) ∧ (𝑐 ∈ dom 𝑆𝑑 ∈ dom 𝑆) ∧ ((♯‘(𝑆𝑐)) = 𝑖 ∧ (𝑆𝑐) = (𝑆𝑑))) ∧ ¬ (𝑐‘0) = (𝑑‘0)) → (♯‘(𝑆𝑐)) = 𝑖)
43 breq2 4788 . . . . . . . . . . . . . . . . 17 ((♯‘(𝑆𝑐)) = 𝑖 → ((♯‘(𝑆𝑎)) < (♯‘(𝑆𝑐)) ↔ (♯‘(𝑆𝑎)) < 𝑖))
4443imbi1d 330 . . . . . . . . . . . . . . . 16 ((♯‘(𝑆𝑐)) = 𝑖 → (((♯‘(𝑆𝑎)) < (♯‘(𝑆𝑐)) → ((𝑆𝑎) = (𝑆𝑏) → (𝑎‘0) = (𝑏‘0))) ↔ ((♯‘(𝑆𝑎)) < 𝑖 → ((𝑆𝑎) = (𝑆𝑏) → (𝑎‘0) = (𝑏‘0)))))
45442ralbidv 3137 . . . . . . . . . . . . . . 15 ((♯‘(𝑆𝑐)) = 𝑖 → (∀𝑎 ∈ dom 𝑆𝑏 ∈ dom 𝑆((♯‘(𝑆𝑎)) < (♯‘(𝑆𝑐)) → ((𝑆𝑎) = (𝑆𝑏) → (𝑎‘0) = (𝑏‘0))) ↔ ∀𝑎 ∈ dom 𝑆𝑏 ∈ dom 𝑆((♯‘(𝑆𝑎)) < 𝑖 → ((𝑆𝑎) = (𝑆𝑏) → (𝑎‘0) = (𝑏‘0)))))
4642, 45syl 17 . . . . . . . . . . . . . 14 (((∀𝑎 ∈ dom 𝑆𝑏 ∈ dom 𝑆((♯‘(𝑆𝑎)) < 𝑖 → ((𝑆𝑎) = (𝑆𝑏) → (𝑎‘0) = (𝑏‘0))) ∧ (𝑐 ∈ dom 𝑆𝑑 ∈ dom 𝑆) ∧ ((♯‘(𝑆𝑐)) = 𝑖 ∧ (𝑆𝑐) = (𝑆𝑑))) ∧ ¬ (𝑐‘0) = (𝑑‘0)) → (∀𝑎 ∈ dom 𝑆𝑏 ∈ dom 𝑆((♯‘(𝑆𝑎)) < (♯‘(𝑆𝑐)) → ((𝑆𝑎) = (𝑆𝑏) → (𝑎‘0) = (𝑏‘0))) ↔ ∀𝑎 ∈ dom 𝑆𝑏 ∈ dom 𝑆((♯‘(𝑆𝑎)) < 𝑖 → ((𝑆𝑎) = (𝑆𝑏) → (𝑎‘0) = (𝑏‘0)))))
4741, 46mpbird 247 . . . . . . . . . . . . 13 (((∀𝑎 ∈ dom 𝑆𝑏 ∈ dom 𝑆((♯‘(𝑆𝑎)) < 𝑖 → ((𝑆𝑎) = (𝑆𝑏) → (𝑎‘0) = (𝑏‘0))) ∧ (𝑐 ∈ dom 𝑆𝑑 ∈ dom 𝑆) ∧ ((♯‘(𝑆𝑐)) = 𝑖 ∧ (𝑆𝑐) = (𝑆𝑑))) ∧ ¬ (𝑐‘0) = (𝑑‘0)) → ∀𝑎 ∈ dom 𝑆𝑏 ∈ dom 𝑆((♯‘(𝑆𝑎)) < (♯‘(𝑆𝑐)) → ((𝑆𝑎) = (𝑆𝑏) → (𝑎‘0) = (𝑏‘0))))
48 simpl2l 1281 . . . . . . . . . . . . 13 (((∀𝑎 ∈ dom 𝑆𝑏 ∈ dom 𝑆((♯‘(𝑆𝑎)) < 𝑖 → ((𝑆𝑎) = (𝑆𝑏) → (𝑎‘0) = (𝑏‘0))) ∧ (𝑐 ∈ dom 𝑆𝑑 ∈ dom 𝑆) ∧ ((♯‘(𝑆𝑐)) = 𝑖 ∧ (𝑆𝑐) = (𝑆𝑑))) ∧ ¬ (𝑐‘0) = (𝑑‘0)) → 𝑐 ∈ dom 𝑆)
49 simpl2r 1283 . . . . . . . . . . . . 13 (((∀𝑎 ∈ dom 𝑆𝑏 ∈ dom 𝑆((♯‘(𝑆𝑎)) < 𝑖 → ((𝑆𝑎) = (𝑆𝑏) → (𝑎‘0) = (𝑏‘0))) ∧ (𝑐 ∈ dom 𝑆𝑑 ∈ dom 𝑆) ∧ ((♯‘(𝑆𝑐)) = 𝑖 ∧ (𝑆𝑐) = (𝑆𝑑))) ∧ ¬ (𝑐‘0) = (𝑑‘0)) → 𝑑 ∈ dom 𝑆)
50 simpl3r 1287 . . . . . . . . . . . . 13 (((∀𝑎 ∈ dom 𝑆𝑏 ∈ dom 𝑆((♯‘(𝑆𝑎)) < 𝑖 → ((𝑆𝑎) = (𝑆𝑏) → (𝑎‘0) = (𝑏‘0))) ∧ (𝑐 ∈ dom 𝑆𝑑 ∈ dom 𝑆) ∧ ((♯‘(𝑆𝑐)) = 𝑖 ∧ (𝑆𝑐) = (𝑆𝑑))) ∧ ¬ (𝑐‘0) = (𝑑‘0)) → (𝑆𝑐) = (𝑆𝑑))
51 simpr 471 . . . . . . . . . . . . 13 (((∀𝑎 ∈ dom 𝑆𝑏 ∈ dom 𝑆((♯‘(𝑆𝑎)) < 𝑖 → ((𝑆𝑎) = (𝑆𝑏) → (𝑎‘0) = (𝑏‘0))) ∧ (𝑐 ∈ dom 𝑆𝑑 ∈ dom 𝑆) ∧ ((♯‘(𝑆𝑐)) = 𝑖 ∧ (𝑆𝑐) = (𝑆𝑑))) ∧ ¬ (𝑐‘0) = (𝑑‘0)) → ¬ (𝑐‘0) = (𝑑‘0))
521, 4, 5, 6, 7, 8, 47, 48, 49, 50, 51efgredlem 18366 . . . . . . . . . . . 12 ¬ ((∀𝑎 ∈ dom 𝑆𝑏 ∈ dom 𝑆((♯‘(𝑆𝑎)) < 𝑖 → ((𝑆𝑎) = (𝑆𝑏) → (𝑎‘0) = (𝑏‘0))) ∧ (𝑐 ∈ dom 𝑆𝑑 ∈ dom 𝑆) ∧ ((♯‘(𝑆𝑐)) = 𝑖 ∧ (𝑆𝑐) = (𝑆𝑑))) ∧ ¬ (𝑐‘0) = (𝑑‘0))
53 iman 388 . . . . . . . . . . . 12 (((∀𝑎 ∈ dom 𝑆𝑏 ∈ dom 𝑆((♯‘(𝑆𝑎)) < 𝑖 → ((𝑆𝑎) = (𝑆𝑏) → (𝑎‘0) = (𝑏‘0))) ∧ (𝑐 ∈ dom 𝑆𝑑 ∈ dom 𝑆) ∧ ((♯‘(𝑆𝑐)) = 𝑖 ∧ (𝑆𝑐) = (𝑆𝑑))) → (𝑐‘0) = (𝑑‘0)) ↔ ¬ ((∀𝑎 ∈ dom 𝑆𝑏 ∈ dom 𝑆((♯‘(𝑆𝑎)) < 𝑖 → ((𝑆𝑎) = (𝑆𝑏) → (𝑎‘0) = (𝑏‘0))) ∧ (𝑐 ∈ dom 𝑆𝑑 ∈ dom 𝑆) ∧ ((♯‘(𝑆𝑐)) = 𝑖 ∧ (𝑆𝑐) = (𝑆𝑑))) ∧ ¬ (𝑐‘0) = (𝑑‘0)))
5452, 53mpbir 221 . . . . . . . . . . 11 ((∀𝑎 ∈ dom 𝑆𝑏 ∈ dom 𝑆((♯‘(𝑆𝑎)) < 𝑖 → ((𝑆𝑎) = (𝑆𝑏) → (𝑎‘0) = (𝑏‘0))) ∧ (𝑐 ∈ dom 𝑆𝑑 ∈ dom 𝑆) ∧ ((♯‘(𝑆𝑐)) = 𝑖 ∧ (𝑆𝑐) = (𝑆𝑑))) → (𝑐‘0) = (𝑑‘0))
55543expia 1113 . . . . . . . . . 10 ((∀𝑎 ∈ dom 𝑆𝑏 ∈ dom 𝑆((♯‘(𝑆𝑎)) < 𝑖 → ((𝑆𝑎) = (𝑆𝑏) → (𝑎‘0) = (𝑏‘0))) ∧ (𝑐 ∈ dom 𝑆𝑑 ∈ dom 𝑆)) → (((♯‘(𝑆𝑐)) = 𝑖 ∧ (𝑆𝑐) = (𝑆𝑑)) → (𝑐‘0) = (𝑑‘0)))
5655expd 400 . . . . . . . . 9 ((∀𝑎 ∈ dom 𝑆𝑏 ∈ dom 𝑆((♯‘(𝑆𝑎)) < 𝑖 → ((𝑆𝑎) = (𝑆𝑏) → (𝑎‘0) = (𝑏‘0))) ∧ (𝑐 ∈ dom 𝑆𝑑 ∈ dom 𝑆)) → ((♯‘(𝑆𝑐)) = 𝑖 → ((𝑆𝑐) = (𝑆𝑑) → (𝑐‘0) = (𝑑‘0))))
5756ralrimivva 3119 . . . . . . . 8 (∀𝑎 ∈ dom 𝑆𝑏 ∈ dom 𝑆((♯‘(𝑆𝑎)) < 𝑖 → ((𝑆𝑎) = (𝑆𝑏) → (𝑎‘0) = (𝑏‘0))) → ∀𝑐 ∈ dom 𝑆𝑑 ∈ dom 𝑆((♯‘(𝑆𝑐)) = 𝑖 → ((𝑆𝑐) = (𝑆𝑑) → (𝑐‘0) = (𝑑‘0))))
58 fveq2 6332 . . . . . . . . . . . 12 (𝑐 = 𝑎 → (𝑆𝑐) = (𝑆𝑎))
5958fveq2d 6336 . . . . . . . . . . 11 (𝑐 = 𝑎 → (♯‘(𝑆𝑐)) = (♯‘(𝑆𝑎)))
6059eqeq1d 2772 . . . . . . . . . 10 (𝑐 = 𝑎 → ((♯‘(𝑆𝑐)) = 𝑖 ↔ (♯‘(𝑆𝑎)) = 𝑖))
6158eqeq1d 2772 . . . . . . . . . . 11 (𝑐 = 𝑎 → ((𝑆𝑐) = (𝑆𝑑) ↔ (𝑆𝑎) = (𝑆𝑑)))
62 fveq1 6331 . . . . . . . . . . . 12 (𝑐 = 𝑎 → (𝑐‘0) = (𝑎‘0))
6362eqeq1d 2772 . . . . . . . . . . 11 (𝑐 = 𝑎 → ((𝑐‘0) = (𝑑‘0) ↔ (𝑎‘0) = (𝑑‘0)))
6461, 63imbi12d 333 . . . . . . . . . 10 (𝑐 = 𝑎 → (((𝑆𝑐) = (𝑆𝑑) → (𝑐‘0) = (𝑑‘0)) ↔ ((𝑆𝑎) = (𝑆𝑑) → (𝑎‘0) = (𝑑‘0))))
6560, 64imbi12d 333 . . . . . . . . 9 (𝑐 = 𝑎 → (((♯‘(𝑆𝑐)) = 𝑖 → ((𝑆𝑐) = (𝑆𝑑) → (𝑐‘0) = (𝑑‘0))) ↔ ((♯‘(𝑆𝑎)) = 𝑖 → ((𝑆𝑎) = (𝑆𝑑) → (𝑎‘0) = (𝑑‘0)))))
66 fveq2 6332 . . . . . . . . . . . 12 (𝑑 = 𝑏 → (𝑆𝑑) = (𝑆𝑏))
6766eqeq2d 2780 . . . . . . . . . . 11 (𝑑 = 𝑏 → ((𝑆𝑎) = (𝑆𝑑) ↔ (𝑆𝑎) = (𝑆𝑏)))
68 fveq1 6331 . . . . . . . . . . . 12 (𝑑 = 𝑏 → (𝑑‘0) = (𝑏‘0))
6968eqeq2d 2780 . . . . . . . . . . 11 (𝑑 = 𝑏 → ((𝑎‘0) = (𝑑‘0) ↔ (𝑎‘0) = (𝑏‘0)))
7067, 69imbi12d 333 . . . . . . . . . 10 (𝑑 = 𝑏 → (((𝑆𝑎) = (𝑆𝑑) → (𝑎‘0) = (𝑑‘0)) ↔ ((𝑆𝑎) = (𝑆𝑏) → (𝑎‘0) = (𝑏‘0))))
7170imbi2d 329 . . . . . . . . 9 (𝑑 = 𝑏 → (((♯‘(𝑆𝑎)) = 𝑖 → ((𝑆𝑎) = (𝑆𝑑) → (𝑎‘0) = (𝑑‘0))) ↔ ((♯‘(𝑆𝑎)) = 𝑖 → ((𝑆𝑎) = (𝑆𝑏) → (𝑎‘0) = (𝑏‘0)))))
7265, 71cbvral2v 3327 . . . . . . . 8 (∀𝑐 ∈ dom 𝑆𝑑 ∈ dom 𝑆((♯‘(𝑆𝑐)) = 𝑖 → ((𝑆𝑐) = (𝑆𝑑) → (𝑐‘0) = (𝑑‘0))) ↔ ∀𝑎 ∈ dom 𝑆𝑏 ∈ dom 𝑆((♯‘(𝑆𝑎)) = 𝑖 → ((𝑆𝑎) = (𝑆𝑏) → (𝑎‘0) = (𝑏‘0))))
7357, 72sylib 208 . . . . . . 7 (∀𝑎 ∈ dom 𝑆𝑏 ∈ dom 𝑆((♯‘(𝑆𝑎)) < 𝑖 → ((𝑆𝑎) = (𝑆𝑏) → (𝑎‘0) = (𝑏‘0))) → ∀𝑎 ∈ dom 𝑆𝑏 ∈ dom 𝑆((♯‘(𝑆𝑎)) = 𝑖 → ((𝑆𝑎) = (𝑆𝑏) → (𝑎‘0) = (𝑏‘0))))
7473ancli 530 . . . . . 6 (∀𝑎 ∈ dom 𝑆𝑏 ∈ dom 𝑆((♯‘(𝑆𝑎)) < 𝑖 → ((𝑆𝑎) = (𝑆𝑏) → (𝑎‘0) = (𝑏‘0))) → (∀𝑎 ∈ dom 𝑆𝑏 ∈ dom 𝑆((♯‘(𝑆𝑎)) < 𝑖 → ((𝑆𝑎) = (𝑆𝑏) → (𝑎‘0) = (𝑏‘0))) ∧ ∀𝑎 ∈ dom 𝑆𝑏 ∈ dom 𝑆((♯‘(𝑆𝑎)) = 𝑖 → ((𝑆𝑎) = (𝑆𝑏) → (𝑎‘0) = (𝑏‘0)))))
7535adantr 466 . . . . . . . . . . 11 ((𝑎 ∈ dom 𝑆𝑏 ∈ dom 𝑆) → (♯‘(𝑆𝑎)) ∈ ℕ0)
76 nn0leltp1 11637 . . . . . . . . . . . . 13 (((♯‘(𝑆𝑎)) ∈ ℕ0𝑖 ∈ ℕ0) → ((♯‘(𝑆𝑎)) ≤ 𝑖 ↔ (♯‘(𝑆𝑎)) < (𝑖 + 1)))
77 nn0re 11502 . . . . . . . . . . . . . 14 ((♯‘(𝑆𝑎)) ∈ ℕ0 → (♯‘(𝑆𝑎)) ∈ ℝ)
78 nn0re 11502 . . . . . . . . . . . . . 14 (𝑖 ∈ ℕ0𝑖 ∈ ℝ)
79 leloe 10325 . . . . . . . . . . . . . 14 (((♯‘(𝑆𝑎)) ∈ ℝ ∧ 𝑖 ∈ ℝ) → ((♯‘(𝑆𝑎)) ≤ 𝑖 ↔ ((♯‘(𝑆𝑎)) < 𝑖 ∨ (♯‘(𝑆𝑎)) = 𝑖)))
8077, 78, 79syl2an 575 . . . . . . . . . . . . 13 (((♯‘(𝑆𝑎)) ∈ ℕ0𝑖 ∈ ℕ0) → ((♯‘(𝑆𝑎)) ≤ 𝑖 ↔ ((♯‘(𝑆𝑎)) < 𝑖 ∨ (♯‘(𝑆𝑎)) = 𝑖)))
8176, 80bitr3d 270 . . . . . . . . . . . 12 (((♯‘(𝑆𝑎)) ∈ ℕ0𝑖 ∈ ℕ0) → ((♯‘(𝑆𝑎)) < (𝑖 + 1) ↔ ((♯‘(𝑆𝑎)) < 𝑖 ∨ (♯‘(𝑆𝑎)) = 𝑖)))
8281ancoms 455 . . . . . . . . . . 11 ((𝑖 ∈ ℕ0 ∧ (♯‘(𝑆𝑎)) ∈ ℕ0) → ((♯‘(𝑆𝑎)) < (𝑖 + 1) ↔ ((♯‘(𝑆𝑎)) < 𝑖 ∨ (♯‘(𝑆𝑎)) = 𝑖)))
8375, 82sylan2 572 . . . . . . . . . 10 ((𝑖 ∈ ℕ0 ∧ (𝑎 ∈ dom 𝑆𝑏 ∈ dom 𝑆)) → ((♯‘(𝑆𝑎)) < (𝑖 + 1) ↔ ((♯‘(𝑆𝑎)) < 𝑖 ∨ (♯‘(𝑆𝑎)) = 𝑖)))
8483imbi1d 330 . . . . . . . . 9 ((𝑖 ∈ ℕ0 ∧ (𝑎 ∈ dom 𝑆𝑏 ∈ dom 𝑆)) → (((♯‘(𝑆𝑎)) < (𝑖 + 1) → ((𝑆𝑎) = (𝑆𝑏) → (𝑎‘0) = (𝑏‘0))) ↔ (((♯‘(𝑆𝑎)) < 𝑖 ∨ (♯‘(𝑆𝑎)) = 𝑖) → ((𝑆𝑎) = (𝑆𝑏) → (𝑎‘0) = (𝑏‘0)))))
85 jaob 935 . . . . . . . . 9 ((((♯‘(𝑆𝑎)) < 𝑖 ∨ (♯‘(𝑆𝑎)) = 𝑖) → ((𝑆𝑎) = (𝑆𝑏) → (𝑎‘0) = (𝑏‘0))) ↔ (((♯‘(𝑆𝑎)) < 𝑖 → ((𝑆𝑎) = (𝑆𝑏) → (𝑎‘0) = (𝑏‘0))) ∧ ((♯‘(𝑆𝑎)) = 𝑖 → ((𝑆𝑎) = (𝑆𝑏) → (𝑎‘0) = (𝑏‘0)))))
8684, 85syl6bb 276 . . . . . . . 8 ((𝑖 ∈ ℕ0 ∧ (𝑎 ∈ dom 𝑆𝑏 ∈ dom 𝑆)) → (((♯‘(𝑆𝑎)) < (𝑖 + 1) → ((𝑆𝑎) = (𝑆𝑏) → (𝑎‘0) = (𝑏‘0))) ↔ (((♯‘(𝑆𝑎)) < 𝑖 → ((𝑆𝑎) = (𝑆𝑏) → (𝑎‘0) = (𝑏‘0))) ∧ ((♯‘(𝑆𝑎)) = 𝑖 → ((𝑆𝑎) = (𝑆𝑏) → (𝑎‘0) = (𝑏‘0))))))
87862ralbidva 3136 . . . . . . 7 (𝑖 ∈ ℕ0 → (∀𝑎 ∈ dom 𝑆𝑏 ∈ dom 𝑆((♯‘(𝑆𝑎)) < (𝑖 + 1) → ((𝑆𝑎) = (𝑆𝑏) → (𝑎‘0) = (𝑏‘0))) ↔ ∀𝑎 ∈ dom 𝑆𝑏 ∈ dom 𝑆(((♯‘(𝑆𝑎)) < 𝑖 → ((𝑆𝑎) = (𝑆𝑏) → (𝑎‘0) = (𝑏‘0))) ∧ ((♯‘(𝑆𝑎)) = 𝑖 → ((𝑆𝑎) = (𝑆𝑏) → (𝑎‘0) = (𝑏‘0))))))
88 r19.26-2 3212 . . . . . . 7 (∀𝑎 ∈ dom 𝑆𝑏 ∈ dom 𝑆(((♯‘(𝑆𝑎)) < 𝑖 → ((𝑆𝑎) = (𝑆𝑏) → (𝑎‘0) = (𝑏‘0))) ∧ ((♯‘(𝑆𝑎)) = 𝑖 → ((𝑆𝑎) = (𝑆𝑏) → (𝑎‘0) = (𝑏‘0)))) ↔ (∀𝑎 ∈ dom 𝑆𝑏 ∈ dom 𝑆((♯‘(𝑆𝑎)) < 𝑖 → ((𝑆𝑎) = (𝑆𝑏) → (𝑎‘0) = (𝑏‘0))) ∧ ∀𝑎 ∈ dom 𝑆𝑏 ∈ dom 𝑆((♯‘(𝑆𝑎)) = 𝑖 → ((𝑆𝑎) = (𝑆𝑏) → (𝑎‘0) = (𝑏‘0)))))
8987, 88syl6bb 276 . . . . . 6 (𝑖 ∈ ℕ0 → (∀𝑎 ∈ dom 𝑆𝑏 ∈ dom 𝑆((♯‘(𝑆𝑎)) < (𝑖 + 1) → ((𝑆𝑎) = (𝑆𝑏) → (𝑎‘0) = (𝑏‘0))) ↔ (∀𝑎 ∈ dom 𝑆𝑏 ∈ dom 𝑆((♯‘(𝑆𝑎)) < 𝑖 → ((𝑆𝑎) = (𝑆𝑏) → (𝑎‘0) = (𝑏‘0))) ∧ ∀𝑎 ∈ dom 𝑆𝑏 ∈ dom 𝑆((♯‘(𝑆𝑎)) = 𝑖 → ((𝑆𝑎) = (𝑆𝑏) → (𝑎‘0) = (𝑏‘0))))))
9074, 89syl5ibr 236 . . . . 5 (𝑖 ∈ ℕ0 → (∀𝑎 ∈ dom 𝑆𝑏 ∈ dom 𝑆((♯‘(𝑆𝑎)) < 𝑖 → ((𝑆𝑎) = (𝑆𝑏) → (𝑎‘0) = (𝑏‘0))) → ∀𝑎 ∈ dom 𝑆𝑏 ∈ dom 𝑆((♯‘(𝑆𝑎)) < (𝑖 + 1) → ((𝑆𝑎) = (𝑆𝑏) → (𝑎‘0) = (𝑏‘0)))))
9122, 25, 28, 31, 40, 90nn0ind 11673 . . . 4 (((♯‘(𝑆𝐴)) + 1) ∈ ℕ0 → ∀𝑎 ∈ dom 𝑆𝑏 ∈ dom 𝑆((♯‘(𝑆𝑎)) < ((♯‘(𝑆𝐴)) + 1) → ((𝑆𝑎) = (𝑆𝑏) → (𝑎‘0) = (𝑏‘0))))
9219, 91syl 17 . . 3 ((𝐴 ∈ dom 𝑆𝐵 ∈ dom 𝑆) → ∀𝑎 ∈ dom 𝑆𝑏 ∈ dom 𝑆((♯‘(𝑆𝑎)) < ((♯‘(𝑆𝐴)) + 1) → ((𝑆𝑎) = (𝑆𝑏) → (𝑎‘0) = (𝑏‘0))))
9317nn0red 11553 . . . 4 ((𝐴 ∈ dom 𝑆𝐵 ∈ dom 𝑆) → (♯‘(𝑆𝐴)) ∈ ℝ)
9493ltp1d 11155 . . 3 ((𝐴 ∈ dom 𝑆𝐵 ∈ dom 𝑆) → (♯‘(𝑆𝐴)) < ((♯‘(𝑆𝐴)) + 1))
95 fveq2 6332 . . . . . . 7 (𝑎 = 𝐴 → (𝑆𝑎) = (𝑆𝐴))
9695fveq2d 6336 . . . . . 6 (𝑎 = 𝐴 → (♯‘(𝑆𝑎)) = (♯‘(𝑆𝐴)))
9796breq1d 4794 . . . . 5 (𝑎 = 𝐴 → ((♯‘(𝑆𝑎)) < ((♯‘(𝑆𝐴)) + 1) ↔ (♯‘(𝑆𝐴)) < ((♯‘(𝑆𝐴)) + 1)))
9895eqeq1d 2772 . . . . . 6 (𝑎 = 𝐴 → ((𝑆𝑎) = (𝑆𝑏) ↔ (𝑆𝐴) = (𝑆𝑏)))
99 fveq1 6331 . . . . . . 7 (𝑎 = 𝐴 → (𝑎‘0) = (𝐴‘0))
10099eqeq1d 2772 . . . . . 6 (𝑎 = 𝐴 → ((𝑎‘0) = (𝑏‘0) ↔ (𝐴‘0) = (𝑏‘0)))
10198, 100imbi12d 333 . . . . 5 (𝑎 = 𝐴 → (((𝑆𝑎) = (𝑆𝑏) → (𝑎‘0) = (𝑏‘0)) ↔ ((𝑆𝐴) = (𝑆𝑏) → (𝐴‘0) = (𝑏‘0))))
10297, 101imbi12d 333 . . . 4 (𝑎 = 𝐴 → (((♯‘(𝑆𝑎)) < ((♯‘(𝑆𝐴)) + 1) → ((𝑆𝑎) = (𝑆𝑏) → (𝑎‘0) = (𝑏‘0))) ↔ ((♯‘(𝑆𝐴)) < ((♯‘(𝑆𝐴)) + 1) → ((𝑆𝐴) = (𝑆𝑏) → (𝐴‘0) = (𝑏‘0)))))
103 fveq2 6332 . . . . . . 7 (𝑏 = 𝐵 → (𝑆𝑏) = (𝑆𝐵))
104103eqeq2d 2780 . . . . . 6 (𝑏 = 𝐵 → ((𝑆𝐴) = (𝑆𝑏) ↔ (𝑆𝐴) = (𝑆𝐵)))
105 fveq1 6331 . . . . . . 7 (𝑏 = 𝐵 → (𝑏‘0) = (𝐵‘0))
106105eqeq2d 2780 . . . . . 6 (𝑏 = 𝐵 → ((𝐴‘0) = (𝑏‘0) ↔ (𝐴‘0) = (𝐵‘0)))
107104, 106imbi12d 333 . . . . 5 (𝑏 = 𝐵 → (((𝑆𝐴) = (𝑆𝑏) → (𝐴‘0) = (𝑏‘0)) ↔ ((𝑆𝐴) = (𝑆𝐵) → (𝐴‘0) = (𝐵‘0))))
108107imbi2d 329 . . . 4 (𝑏 = 𝐵 → (((♯‘(𝑆𝐴)) < ((♯‘(𝑆𝐴)) + 1) → ((𝑆𝐴) = (𝑆𝑏) → (𝐴‘0) = (𝑏‘0))) ↔ ((♯‘(𝑆𝐴)) < ((♯‘(𝑆𝐴)) + 1) → ((𝑆𝐴) = (𝑆𝐵) → (𝐴‘0) = (𝐵‘0)))))
109102, 108rspc2v 3470 . . 3 ((𝐴 ∈ dom 𝑆𝐵 ∈ dom 𝑆) → (∀𝑎 ∈ dom 𝑆𝑏 ∈ dom 𝑆((♯‘(𝑆𝑎)) < ((♯‘(𝑆𝐴)) + 1) → ((𝑆𝑎) = (𝑆𝑏) → (𝑎‘0) = (𝑏‘0))) → ((♯‘(𝑆𝐴)) < ((♯‘(𝑆𝐴)) + 1) → ((𝑆𝐴) = (𝑆𝐵) → (𝐴‘0) = (𝐵‘0)))))
11092, 94, 109mp2d 49 . 2 ((𝐴 ∈ dom 𝑆𝐵 ∈ dom 𝑆) → ((𝑆𝐴) = (𝑆𝐵) → (𝐴‘0) = (𝐵‘0)))
1111103impia 1108 1 ((𝐴 ∈ dom 𝑆𝐵 ∈ dom 𝑆 ∧ (𝑆𝐴) = (𝑆𝐵)) → (𝐴‘0) = (𝐵‘0))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 382  wo 826  w3a 1070   = wceq 1630  wcel 2144  wral 3060  {crab 3064  cdif 3718  c0 4061  {csn 4314  cop 4320  cotp 4322   ciun 4652   class class class wbr 4784  cmpt 4861   I cid 5156   × cxp 5247  dom cdm 5249  ran crn 5250  wf 6027  cfv 6031  (class class class)co 6792  cmpt2 6794  1𝑜c1o 7705  2𝑜c2o 7706  cr 10136  0cc0 10137  1c1 10138   + caddc 10140   < clt 10275  cle 10276  cmin 10467  0cn0 11493  ...cfz 12532  ..^cfzo 12672  chash 13320  Word cword 13486   splice csplice 13491  ⟨“cs2 13794   ~FG cefg 18325
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1869  ax-4 1884  ax-5 1990  ax-6 2056  ax-7 2092  ax-8 2146  ax-9 2153  ax-10 2173  ax-11 2189  ax-12 2202  ax-13 2407  ax-ext 2750  ax-rep 4902  ax-sep 4912  ax-nul 4920  ax-pow 4971  ax-pr 5034  ax-un 7095  ax-cnex 10193  ax-resscn 10194  ax-1cn 10195  ax-icn 10196  ax-addcl 10197  ax-addrcl 10198  ax-mulcl 10199  ax-mulrcl 10200  ax-mulcom 10201  ax-addass 10202  ax-mulass 10203  ax-distr 10204  ax-i2m1 10205  ax-1ne0 10206  ax-1rid 10207  ax-rnegex 10208  ax-rrecex 10209  ax-cnre 10210  ax-pre-lttri 10211  ax-pre-lttrn 10212  ax-pre-ltadd 10213  ax-pre-mulgt0 10214
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 827  df-3or 1071  df-3an 1072  df-tru 1633  df-ex 1852  df-nf 1857  df-sb 2049  df-eu 2621  df-mo 2622  df-clab 2757  df-cleq 2763  df-clel 2766  df-nfc 2901  df-ne 2943  df-nel 3046  df-ral 3065  df-rex 3066  df-reu 3067  df-rab 3069  df-v 3351  df-sbc 3586  df-csb 3681  df-dif 3724  df-un 3726  df-in 3728  df-ss 3735  df-pss 3737  df-nul 4062  df-if 4224  df-pw 4297  df-sn 4315  df-pr 4317  df-tp 4319  df-op 4321  df-ot 4323  df-uni 4573  df-int 4610  df-iun 4654  df-br 4785  df-opab 4845  df-mpt 4862  df-tr 4885  df-id 5157  df-eprel 5162  df-po 5170  df-so 5171  df-fr 5208  df-we 5210  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-pred 5823  df-ord 5869  df-on 5870  df-lim 5871  df-suc 5872  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039  df-riota 6753  df-ov 6795  df-oprab 6796  df-mpt2 6797  df-om 7212  df-1st 7314  df-2nd 7315  df-wrecs 7558  df-recs 7620  df-rdg 7658  df-1o 7712  df-2o 7713  df-oadd 7716  df-er 7895  df-map 8010  df-pm 8011  df-en 8109  df-dom 8110  df-sdom 8111  df-fin 8112  df-card 8964  df-pnf 10277  df-mnf 10278  df-xr 10279  df-ltxr 10280  df-le 10281  df-sub 10469  df-neg 10470  df-nn 11222  df-2 11280  df-n0 11494  df-z 11579  df-uz 11888  df-rp 12035  df-fz 12533  df-fzo 12673  df-hash 13321  df-word 13494  df-concat 13496  df-s1 13497  df-substr 13498  df-splice 13499  df-s2 13801
This theorem is referenced by:  efgrelexlemb  18369
  Copyright terms: Public domain W3C validator