![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > efgmf | Structured version Visualization version GIF version |
Description: The formal inverse operation is an endofunction on the generating set. (Contributed by Mario Carneiro, 27-Sep-2015.) |
Ref | Expression |
---|---|
efgmval.m | ⊢ 𝑀 = (𝑦 ∈ 𝐼, 𝑧 ∈ 2𝑜 ↦ 〈𝑦, (1𝑜 ∖ 𝑧)〉) |
Ref | Expression |
---|---|
efgmf | ⊢ 𝑀:(𝐼 × 2𝑜)⟶(𝐼 × 2𝑜) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2oconcl 7754 | . . . 4 ⊢ (𝑧 ∈ 2𝑜 → (1𝑜 ∖ 𝑧) ∈ 2𝑜) | |
2 | opelxpi 5305 | . . . 4 ⊢ ((𝑦 ∈ 𝐼 ∧ (1𝑜 ∖ 𝑧) ∈ 2𝑜) → 〈𝑦, (1𝑜 ∖ 𝑧)〉 ∈ (𝐼 × 2𝑜)) | |
3 | 1, 2 | sylan2 492 | . . 3 ⊢ ((𝑦 ∈ 𝐼 ∧ 𝑧 ∈ 2𝑜) → 〈𝑦, (1𝑜 ∖ 𝑧)〉 ∈ (𝐼 × 2𝑜)) |
4 | 3 | rgen2 3113 | . 2 ⊢ ∀𝑦 ∈ 𝐼 ∀𝑧 ∈ 2𝑜 〈𝑦, (1𝑜 ∖ 𝑧)〉 ∈ (𝐼 × 2𝑜) |
5 | efgmval.m | . . 3 ⊢ 𝑀 = (𝑦 ∈ 𝐼, 𝑧 ∈ 2𝑜 ↦ 〈𝑦, (1𝑜 ∖ 𝑧)〉) | |
6 | 5 | fmpt2 7406 | . 2 ⊢ (∀𝑦 ∈ 𝐼 ∀𝑧 ∈ 2𝑜 〈𝑦, (1𝑜 ∖ 𝑧)〉 ∈ (𝐼 × 2𝑜) ↔ 𝑀:(𝐼 × 2𝑜)⟶(𝐼 × 2𝑜)) |
7 | 4, 6 | mpbi 220 | 1 ⊢ 𝑀:(𝐼 × 2𝑜)⟶(𝐼 × 2𝑜) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1632 ∈ wcel 2139 ∀wral 3050 ∖ cdif 3712 〈cop 4327 × cxp 5264 ⟶wf 6045 ↦ cmpt2 6816 1𝑜c1o 7723 2𝑜c2o 7724 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-8 2141 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-sep 4933 ax-nul 4941 ax-pow 4992 ax-pr 5055 ax-un 7115 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-eu 2611 df-mo 2612 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ne 2933 df-ral 3055 df-rex 3056 df-rab 3059 df-v 3342 df-sbc 3577 df-csb 3675 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-pss 3731 df-nul 4059 df-if 4231 df-pw 4304 df-sn 4322 df-pr 4324 df-tp 4326 df-op 4328 df-uni 4589 df-iun 4674 df-br 4805 df-opab 4865 df-mpt 4882 df-tr 4905 df-id 5174 df-eprel 5179 df-po 5187 df-so 5188 df-fr 5225 df-we 5227 df-xp 5272 df-rel 5273 df-cnv 5274 df-co 5275 df-dm 5276 df-rn 5277 df-res 5278 df-ima 5279 df-ord 5887 df-on 5888 df-suc 5890 df-iota 6012 df-fun 6051 df-fn 6052 df-f 6053 df-fv 6057 df-oprab 6818 df-mpt2 6819 df-1st 7334 df-2nd 7335 df-1o 7730 df-2o 7731 |
This theorem is referenced by: efgtf 18355 efgtlen 18359 efginvrel2 18360 efginvrel1 18361 efgredleme 18376 efgredlemc 18378 efgcpbllemb 18388 frgp0 18393 frgpinv 18397 vrgpinv 18402 frgpnabllem1 18496 |
Copyright terms: Public domain | W3C validator |