Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  efglem Structured version   Visualization version   GIF version

Theorem efglem 18336
 Description: Lemma for efgval 18337. (Contributed by Mario Carneiro, 27-Sep-2015.)
Hypothesis
Ref Expression
efgval.w 𝑊 = ( I ‘Word (𝐼 × 2𝑜))
Assertion
Ref Expression
efglem 𝑟(𝑟 Er 𝑊 ∧ ∀𝑥𝑊𝑛 ∈ (0...(♯‘𝑥))∀𝑦𝐼𝑧 ∈ 2𝑜 𝑥𝑟(𝑥 splice ⟨𝑛, 𝑛, ⟨“⟨𝑦, 𝑧⟩⟨𝑦, (1𝑜𝑧)⟩”⟩⟩))
Distinct variable groups:   𝑦,𝑟,𝑧,𝑛,𝑥,𝑊   𝑛,𝐼,𝑟,𝑥,𝑦,𝑧

Proof of Theorem efglem
StepHypRef Expression
1 xpider 7974 . 2 (𝑊 × 𝑊) Er 𝑊
2 simpll 750 . . . . 5 (((𝑥𝑊𝑛 ∈ (0...(♯‘𝑥))) ∧ (𝑦𝐼𝑧 ∈ 2𝑜)) → 𝑥𝑊)
3 efgval.w . . . . . . . . 9 𝑊 = ( I ‘Word (𝐼 × 2𝑜))
4 fviss 6400 . . . . . . . . 9 ( I ‘Word (𝐼 × 2𝑜)) ⊆ Word (𝐼 × 2𝑜)
53, 4eqsstri 3784 . . . . . . . 8 𝑊 ⊆ Word (𝐼 × 2𝑜)
65, 2sseldi 3750 . . . . . . 7 (((𝑥𝑊𝑛 ∈ (0...(♯‘𝑥))) ∧ (𝑦𝐼𝑧 ∈ 2𝑜)) → 𝑥 ∈ Word (𝐼 × 2𝑜))
7 opelxpi 5287 . . . . . . . . 9 ((𝑦𝐼𝑧 ∈ 2𝑜) → ⟨𝑦, 𝑧⟩ ∈ (𝐼 × 2𝑜))
87adantl 467 . . . . . . . 8 (((𝑥𝑊𝑛 ∈ (0...(♯‘𝑥))) ∧ (𝑦𝐼𝑧 ∈ 2𝑜)) → ⟨𝑦, 𝑧⟩ ∈ (𝐼 × 2𝑜))
9 2oconcl 7741 . . . . . . . . . 10 (𝑧 ∈ 2𝑜 → (1𝑜𝑧) ∈ 2𝑜)
10 opelxpi 5287 . . . . . . . . . 10 ((𝑦𝐼 ∧ (1𝑜𝑧) ∈ 2𝑜) → ⟨𝑦, (1𝑜𝑧)⟩ ∈ (𝐼 × 2𝑜))
119, 10sylan2 580 . . . . . . . . 9 ((𝑦𝐼𝑧 ∈ 2𝑜) → ⟨𝑦, (1𝑜𝑧)⟩ ∈ (𝐼 × 2𝑜))
1211adantl 467 . . . . . . . 8 (((𝑥𝑊𝑛 ∈ (0...(♯‘𝑥))) ∧ (𝑦𝐼𝑧 ∈ 2𝑜)) → ⟨𝑦, (1𝑜𝑧)⟩ ∈ (𝐼 × 2𝑜))
138, 12s2cld 13825 . . . . . . 7 (((𝑥𝑊𝑛 ∈ (0...(♯‘𝑥))) ∧ (𝑦𝐼𝑧 ∈ 2𝑜)) → ⟨“⟨𝑦, 𝑧⟩⟨𝑦, (1𝑜𝑧)⟩”⟩ ∈ Word (𝐼 × 2𝑜))
14 splcl 13712 . . . . . . 7 ((𝑥 ∈ Word (𝐼 × 2𝑜) ∧ ⟨“⟨𝑦, 𝑧⟩⟨𝑦, (1𝑜𝑧)⟩”⟩ ∈ Word (𝐼 × 2𝑜)) → (𝑥 splice ⟨𝑛, 𝑛, ⟨“⟨𝑦, 𝑧⟩⟨𝑦, (1𝑜𝑧)⟩”⟩⟩) ∈ Word (𝐼 × 2𝑜))
156, 13, 14syl2anc 573 . . . . . 6 (((𝑥𝑊𝑛 ∈ (0...(♯‘𝑥))) ∧ (𝑦𝐼𝑧 ∈ 2𝑜)) → (𝑥 splice ⟨𝑛, 𝑛, ⟨“⟨𝑦, 𝑧⟩⟨𝑦, (1𝑜𝑧)⟩”⟩⟩) ∈ Word (𝐼 × 2𝑜))
163efgrcl 18335 . . . . . . . 8 (𝑥𝑊 → (𝐼 ∈ V ∧ 𝑊 = Word (𝐼 × 2𝑜)))
1716simprd 483 . . . . . . 7 (𝑥𝑊𝑊 = Word (𝐼 × 2𝑜))
1817ad2antrr 705 . . . . . 6 (((𝑥𝑊𝑛 ∈ (0...(♯‘𝑥))) ∧ (𝑦𝐼𝑧 ∈ 2𝑜)) → 𝑊 = Word (𝐼 × 2𝑜))
1915, 18eleqtrrd 2853 . . . . 5 (((𝑥𝑊𝑛 ∈ (0...(♯‘𝑥))) ∧ (𝑦𝐼𝑧 ∈ 2𝑜)) → (𝑥 splice ⟨𝑛, 𝑛, ⟨“⟨𝑦, 𝑧⟩⟨𝑦, (1𝑜𝑧)⟩”⟩⟩) ∈ 𝑊)
20 brxp 5286 . . . . 5 (𝑥(𝑊 × 𝑊)(𝑥 splice ⟨𝑛, 𝑛, ⟨“⟨𝑦, 𝑧⟩⟨𝑦, (1𝑜𝑧)⟩”⟩⟩) ↔ (𝑥𝑊 ∧ (𝑥 splice ⟨𝑛, 𝑛, ⟨“⟨𝑦, 𝑧⟩⟨𝑦, (1𝑜𝑧)⟩”⟩⟩) ∈ 𝑊))
212, 19, 20sylanbrc 572 . . . 4 (((𝑥𝑊𝑛 ∈ (0...(♯‘𝑥))) ∧ (𝑦𝐼𝑧 ∈ 2𝑜)) → 𝑥(𝑊 × 𝑊)(𝑥 splice ⟨𝑛, 𝑛, ⟨“⟨𝑦, 𝑧⟩⟨𝑦, (1𝑜𝑧)⟩”⟩⟩))
2221ralrimivva 3120 . . 3 ((𝑥𝑊𝑛 ∈ (0...(♯‘𝑥))) → ∀𝑦𝐼𝑧 ∈ 2𝑜 𝑥(𝑊 × 𝑊)(𝑥 splice ⟨𝑛, 𝑛, ⟨“⟨𝑦, 𝑧⟩⟨𝑦, (1𝑜𝑧)⟩”⟩⟩))
2322rgen2 3124 . 2 𝑥𝑊𝑛 ∈ (0...(♯‘𝑥))∀𝑦𝐼𝑧 ∈ 2𝑜 𝑥(𝑊 × 𝑊)(𝑥 splice ⟨𝑛, 𝑛, ⟨“⟨𝑦, 𝑧⟩⟨𝑦, (1𝑜𝑧)⟩”⟩⟩)
243fvexi 6345 . . . 4 𝑊 ∈ V
2524, 24xpex 7113 . . 3 (𝑊 × 𝑊) ∈ V
26 ereq1 7907 . . . 4 (𝑟 = (𝑊 × 𝑊) → (𝑟 Er 𝑊 ↔ (𝑊 × 𝑊) Er 𝑊))
27 breq 4789 . . . . . 6 (𝑟 = (𝑊 × 𝑊) → (𝑥𝑟(𝑥 splice ⟨𝑛, 𝑛, ⟨“⟨𝑦, 𝑧⟩⟨𝑦, (1𝑜𝑧)⟩”⟩⟩) ↔ 𝑥(𝑊 × 𝑊)(𝑥 splice ⟨𝑛, 𝑛, ⟨“⟨𝑦, 𝑧⟩⟨𝑦, (1𝑜𝑧)⟩”⟩⟩)))
28272ralbidv 3138 . . . . 5 (𝑟 = (𝑊 × 𝑊) → (∀𝑦𝐼𝑧 ∈ 2𝑜 𝑥𝑟(𝑥 splice ⟨𝑛, 𝑛, ⟨“⟨𝑦, 𝑧⟩⟨𝑦, (1𝑜𝑧)⟩”⟩⟩) ↔ ∀𝑦𝐼𝑧 ∈ 2𝑜 𝑥(𝑊 × 𝑊)(𝑥 splice ⟨𝑛, 𝑛, ⟨“⟨𝑦, 𝑧⟩⟨𝑦, (1𝑜𝑧)⟩”⟩⟩)))
29282ralbidv 3138 . . . 4 (𝑟 = (𝑊 × 𝑊) → (∀𝑥𝑊𝑛 ∈ (0...(♯‘𝑥))∀𝑦𝐼𝑧 ∈ 2𝑜 𝑥𝑟(𝑥 splice ⟨𝑛, 𝑛, ⟨“⟨𝑦, 𝑧⟩⟨𝑦, (1𝑜𝑧)⟩”⟩⟩) ↔ ∀𝑥𝑊𝑛 ∈ (0...(♯‘𝑥))∀𝑦𝐼𝑧 ∈ 2𝑜 𝑥(𝑊 × 𝑊)(𝑥 splice ⟨𝑛, 𝑛, ⟨“⟨𝑦, 𝑧⟩⟨𝑦, (1𝑜𝑧)⟩”⟩⟩)))
3026, 29anbi12d 616 . . 3 (𝑟 = (𝑊 × 𝑊) → ((𝑟 Er 𝑊 ∧ ∀𝑥𝑊𝑛 ∈ (0...(♯‘𝑥))∀𝑦𝐼𝑧 ∈ 2𝑜 𝑥𝑟(𝑥 splice ⟨𝑛, 𝑛, ⟨“⟨𝑦, 𝑧⟩⟨𝑦, (1𝑜𝑧)⟩”⟩⟩)) ↔ ((𝑊 × 𝑊) Er 𝑊 ∧ ∀𝑥𝑊𝑛 ∈ (0...(♯‘𝑥))∀𝑦𝐼𝑧 ∈ 2𝑜 𝑥(𝑊 × 𝑊)(𝑥 splice ⟨𝑛, 𝑛, ⟨“⟨𝑦, 𝑧⟩⟨𝑦, (1𝑜𝑧)⟩”⟩⟩))))
3125, 30spcev 3451 . 2 (((𝑊 × 𝑊) Er 𝑊 ∧ ∀𝑥𝑊𝑛 ∈ (0...(♯‘𝑥))∀𝑦𝐼𝑧 ∈ 2𝑜 𝑥(𝑊 × 𝑊)(𝑥 splice ⟨𝑛, 𝑛, ⟨“⟨𝑦, 𝑧⟩⟨𝑦, (1𝑜𝑧)⟩”⟩⟩)) → ∃𝑟(𝑟 Er 𝑊 ∧ ∀𝑥𝑊𝑛 ∈ (0...(♯‘𝑥))∀𝑦𝐼𝑧 ∈ 2𝑜 𝑥𝑟(𝑥 splice ⟨𝑛, 𝑛, ⟨“⟨𝑦, 𝑧⟩⟨𝑦, (1𝑜𝑧)⟩”⟩⟩)))
321, 23, 31mp2an 672 1 𝑟(𝑟 Er 𝑊 ∧ ∀𝑥𝑊𝑛 ∈ (0...(♯‘𝑥))∀𝑦𝐼𝑧 ∈ 2𝑜 𝑥𝑟(𝑥 splice ⟨𝑛, 𝑛, ⟨“⟨𝑦, 𝑧⟩⟨𝑦, (1𝑜𝑧)⟩”⟩⟩))
 Colors of variables: wff setvar class Syntax hints:   ∧ wa 382   = wceq 1631  ∃wex 1852   ∈ wcel 2145  ∀wral 3061  Vcvv 3351   ∖ cdif 3720  ⟨cop 4323  ⟨cotp 4325   class class class wbr 4787   I cid 5157   × cxp 5248  ‘cfv 6030  (class class class)co 6796  1𝑜c1o 7710  2𝑜c2o 7711   Er wer 7897  0cc0 10142  ...cfz 12533  ♯chash 13321  Word cword 13487   splice csplice 13492  ⟨“cs2 13795 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-rep 4905  ax-sep 4916  ax-nul 4924  ax-pow 4975  ax-pr 5035  ax-un 7100  ax-cnex 10198  ax-resscn 10199  ax-1cn 10200  ax-icn 10201  ax-addcl 10202  ax-addrcl 10203  ax-mulcl 10204  ax-mulrcl 10205  ax-mulcom 10206  ax-addass 10207  ax-mulass 10208  ax-distr 10209  ax-i2m1 10210  ax-1ne0 10211  ax-1rid 10212  ax-rnegex 10213  ax-rrecex 10214  ax-cnre 10215  ax-pre-lttri 10216  ax-pre-lttrn 10217  ax-pre-ltadd 10218  ax-pre-mulgt0 10219 This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3or 1072  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-pss 3739  df-nul 4064  df-if 4227  df-pw 4300  df-sn 4318  df-pr 4320  df-tp 4322  df-op 4324  df-ot 4326  df-uni 4576  df-int 4613  df-iun 4657  df-br 4788  df-opab 4848  df-mpt 4865  df-tr 4888  df-id 5158  df-eprel 5163  df-po 5171  df-so 5172  df-fr 5209  df-we 5211  df-xp 5256  df-rel 5257  df-cnv 5258  df-co 5259  df-dm 5260  df-rn 5261  df-res 5262  df-ima 5263  df-pred 5822  df-ord 5868  df-on 5869  df-lim 5870  df-suc 5871  df-iota 5993  df-fun 6032  df-fn 6033  df-f 6034  df-f1 6035  df-fo 6036  df-f1o 6037  df-fv 6038  df-riota 6757  df-ov 6799  df-oprab 6800  df-mpt2 6801  df-om 7217  df-1st 7319  df-2nd 7320  df-wrecs 7563  df-recs 7625  df-rdg 7663  df-1o 7717  df-2o 7718  df-oadd 7721  df-er 7900  df-map 8015  df-pm 8016  df-en 8114  df-dom 8115  df-sdom 8116  df-fin 8117  df-card 8969  df-pnf 10282  df-mnf 10283  df-xr 10284  df-ltxr 10285  df-le 10286  df-sub 10474  df-neg 10475  df-nn 11227  df-n0 11500  df-z 11585  df-uz 11894  df-fz 12534  df-fzo 12674  df-hash 13322  df-word 13495  df-concat 13497  df-s1 13498  df-substr 13499  df-splice 13500  df-s2 13802 This theorem is referenced by:  efgval  18337  efger  18338
 Copyright terms: Public domain W3C validator