![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > efgi1 | Structured version Visualization version GIF version |
Description: Value of the free group construction. (Contributed by Mario Carneiro, 27-Sep-2015.) (Revised by Mario Carneiro, 27-Feb-2016.) |
Ref | Expression |
---|---|
efgval.w | ⊢ 𝑊 = ( I ‘Word (𝐼 × 2𝑜)) |
efgval.r | ⊢ ∼ = ( ~FG ‘𝐼) |
Ref | Expression |
---|---|
efgi1 | ⊢ ((𝐴 ∈ 𝑊 ∧ 𝑁 ∈ (0...(#‘𝐴)) ∧ 𝐽 ∈ 𝐼) → 𝐴 ∼ (𝐴 splice 〈𝑁, 𝑁, 〈“〈𝐽, 1𝑜〉〈𝐽, ∅〉”〉〉)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1on 7612 | . . . . . . 7 ⊢ 1𝑜 ∈ On | |
2 | 1 | elexi 3244 | . . . . . 6 ⊢ 1𝑜 ∈ V |
3 | 2 | prid2 4330 | . . . . 5 ⊢ 1𝑜 ∈ {∅, 1𝑜} |
4 | df2o3 7618 | . . . . 5 ⊢ 2𝑜 = {∅, 1𝑜} | |
5 | 3, 4 | eleqtrri 2729 | . . . 4 ⊢ 1𝑜 ∈ 2𝑜 |
6 | efgval.w | . . . . 5 ⊢ 𝑊 = ( I ‘Word (𝐼 × 2𝑜)) | |
7 | efgval.r | . . . . 5 ⊢ ∼ = ( ~FG ‘𝐼) | |
8 | 6, 7 | efgi 18178 | . . . 4 ⊢ (((𝐴 ∈ 𝑊 ∧ 𝑁 ∈ (0...(#‘𝐴))) ∧ (𝐽 ∈ 𝐼 ∧ 1𝑜 ∈ 2𝑜)) → 𝐴 ∼ (𝐴 splice 〈𝑁, 𝑁, 〈“〈𝐽, 1𝑜〉〈𝐽, (1𝑜 ∖ 1𝑜)〉”〉〉)) |
9 | 5, 8 | mpanr2 720 | . . 3 ⊢ (((𝐴 ∈ 𝑊 ∧ 𝑁 ∈ (0...(#‘𝐴))) ∧ 𝐽 ∈ 𝐼) → 𝐴 ∼ (𝐴 splice 〈𝑁, 𝑁, 〈“〈𝐽, 1𝑜〉〈𝐽, (1𝑜 ∖ 1𝑜)〉”〉〉)) |
10 | 9 | 3impa 1278 | . 2 ⊢ ((𝐴 ∈ 𝑊 ∧ 𝑁 ∈ (0...(#‘𝐴)) ∧ 𝐽 ∈ 𝐼) → 𝐴 ∼ (𝐴 splice 〈𝑁, 𝑁, 〈“〈𝐽, 1𝑜〉〈𝐽, (1𝑜 ∖ 1𝑜)〉”〉〉)) |
11 | tru 1527 | . . . 4 ⊢ ⊤ | |
12 | eqidd 2652 | . . . . 5 ⊢ (⊤ → 〈𝐽, 1𝑜〉 = 〈𝐽, 1𝑜〉) | |
13 | difid 3981 | . . . . . . 7 ⊢ (1𝑜 ∖ 1𝑜) = ∅ | |
14 | 13 | opeq2i 4437 | . . . . . 6 ⊢ 〈𝐽, (1𝑜 ∖ 1𝑜)〉 = 〈𝐽, ∅〉 |
15 | 14 | a1i 11 | . . . . 5 ⊢ (⊤ → 〈𝐽, (1𝑜 ∖ 1𝑜)〉 = 〈𝐽, ∅〉) |
16 | 12, 15 | s2eqd 13654 | . . . 4 ⊢ (⊤ → 〈“〈𝐽, 1𝑜〉〈𝐽, (1𝑜 ∖ 1𝑜)〉”〉 = 〈“〈𝐽, 1𝑜〉〈𝐽, ∅〉”〉) |
17 | oteq3 4444 | . . . 4 ⊢ (〈“〈𝐽, 1𝑜〉〈𝐽, (1𝑜 ∖ 1𝑜)〉”〉 = 〈“〈𝐽, 1𝑜〉〈𝐽, ∅〉”〉 → 〈𝑁, 𝑁, 〈“〈𝐽, 1𝑜〉〈𝐽, (1𝑜 ∖ 1𝑜)〉”〉〉 = 〈𝑁, 𝑁, 〈“〈𝐽, 1𝑜〉〈𝐽, ∅〉”〉〉) | |
18 | 11, 16, 17 | mp2b 10 | . . 3 ⊢ 〈𝑁, 𝑁, 〈“〈𝐽, 1𝑜〉〈𝐽, (1𝑜 ∖ 1𝑜)〉”〉〉 = 〈𝑁, 𝑁, 〈“〈𝐽, 1𝑜〉〈𝐽, ∅〉”〉〉 |
19 | 18 | oveq2i 6701 | . 2 ⊢ (𝐴 splice 〈𝑁, 𝑁, 〈“〈𝐽, 1𝑜〉〈𝐽, (1𝑜 ∖ 1𝑜)〉”〉〉) = (𝐴 splice 〈𝑁, 𝑁, 〈“〈𝐽, 1𝑜〉〈𝐽, ∅〉”〉〉) |
20 | 10, 19 | syl6breq 4726 | 1 ⊢ ((𝐴 ∈ 𝑊 ∧ 𝑁 ∈ (0...(#‘𝐴)) ∧ 𝐽 ∈ 𝐼) → 𝐴 ∼ (𝐴 splice 〈𝑁, 𝑁, 〈“〈𝐽, 1𝑜〉〈𝐽, ∅〉”〉〉)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 ∧ w3a 1054 = wceq 1523 ⊤wtru 1524 ∈ wcel 2030 ∖ cdif 3604 ∅c0 3948 {cpr 4212 〈cop 4216 〈cotp 4218 class class class wbr 4685 I cid 5052 × cxp 5141 Oncon0 5761 ‘cfv 5926 (class class class)co 6690 1𝑜c1o 7598 2𝑜c2o 7599 0cc0 9974 ...cfz 12364 #chash 13157 Word cword 13323 splice csplice 13328 〈“cs2 13632 ~FG cefg 18165 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-8 2032 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-rep 4804 ax-sep 4814 ax-nul 4822 ax-pow 4873 ax-pr 4936 ax-un 6991 ax-cnex 10030 ax-resscn 10031 ax-1cn 10032 ax-icn 10033 ax-addcl 10034 ax-addrcl 10035 ax-mulcl 10036 ax-mulrcl 10037 ax-mulcom 10038 ax-addass 10039 ax-mulass 10040 ax-distr 10041 ax-i2m1 10042 ax-1ne0 10043 ax-1rid 10044 ax-rnegex 10045 ax-rrecex 10046 ax-cnre 10047 ax-pre-lttri 10048 ax-pre-lttrn 10049 ax-pre-ltadd 10050 ax-pre-mulgt0 10051 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1055 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-mo 2503 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ne 2824 df-nel 2927 df-ral 2946 df-rex 2947 df-reu 2948 df-rab 2950 df-v 3233 df-sbc 3469 df-csb 3567 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-pss 3623 df-nul 3949 df-if 4120 df-pw 4193 df-sn 4211 df-pr 4213 df-tp 4215 df-op 4217 df-ot 4219 df-uni 4469 df-int 4508 df-iun 4554 df-br 4686 df-opab 4746 df-mpt 4763 df-tr 4786 df-id 5053 df-eprel 5058 df-po 5064 df-so 5065 df-fr 5102 df-we 5104 df-xp 5149 df-rel 5150 df-cnv 5151 df-co 5152 df-dm 5153 df-rn 5154 df-res 5155 df-ima 5156 df-pred 5718 df-ord 5764 df-on 5765 df-lim 5766 df-suc 5767 df-iota 5889 df-fun 5928 df-fn 5929 df-f 5930 df-f1 5931 df-fo 5932 df-f1o 5933 df-fv 5934 df-riota 6651 df-ov 6693 df-oprab 6694 df-mpt2 6695 df-om 7108 df-1st 7210 df-2nd 7211 df-wrecs 7452 df-recs 7513 df-rdg 7551 df-1o 7605 df-2o 7606 df-oadd 7609 df-er 7787 df-map 7901 df-pm 7902 df-en 7998 df-dom 7999 df-sdom 8000 df-fin 8001 df-card 8803 df-pnf 10114 df-mnf 10115 df-xr 10116 df-ltxr 10117 df-le 10118 df-sub 10306 df-neg 10307 df-nn 11059 df-n0 11331 df-z 11416 df-uz 11726 df-fz 12365 df-fzo 12505 df-hash 13158 df-word 13331 df-concat 13333 df-s1 13334 df-substr 13335 df-splice 13336 df-s2 13639 df-efg 18168 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |