MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  efgh Structured version   Visualization version   GIF version

Theorem efgh 24508
Description: The exponential function of a scaled complex number is a group homomorphism from the group of complex numbers under addition to the set of complex numbers under multiplication. (Contributed by Paul Chapman, 25-Apr-2008.) (Revised by Mario Carneiro, 11-May-2014.) (Revised by Thierry Arnoux, 26-Jan-2020.)
Hypothesis
Ref Expression
efgh.1 𝐹 = (𝑥𝑋 ↦ (exp‘(𝐴 · 𝑥)))
Assertion
Ref Expression
efgh (((𝐴 ∈ ℂ ∧ 𝑋 ∈ (SubGrp‘ℂfld)) ∧ 𝐵𝑋𝐶𝑋) → (𝐹‘(𝐵 + 𝐶)) = ((𝐹𝐵) · (𝐹𝐶)))
Distinct variable groups:   𝑥,𝐴   𝑥,𝑋
Allowed substitution hints:   𝐵(𝑥)   𝐶(𝑥)   𝐹(𝑥)

Proof of Theorem efgh
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 simp1l 1239 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝑋 ∈ (SubGrp‘ℂfld)) ∧ 𝐵𝑋𝐶𝑋) → 𝐴 ∈ ℂ)
2 simp1r 1240 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝑋 ∈ (SubGrp‘ℂfld)) ∧ 𝐵𝑋𝐶𝑋) → 𝑋 ∈ (SubGrp‘ℂfld))
3 cnfldbas 19965 . . . . . . . 8 ℂ = (Base‘ℂfld)
43subgss 17803 . . . . . . 7 (𝑋 ∈ (SubGrp‘ℂfld) → 𝑋 ⊆ ℂ)
52, 4syl 17 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝑋 ∈ (SubGrp‘ℂfld)) ∧ 𝐵𝑋𝐶𝑋) → 𝑋 ⊆ ℂ)
6 simp2 1131 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝑋 ∈ (SubGrp‘ℂfld)) ∧ 𝐵𝑋𝐶𝑋) → 𝐵𝑋)
75, 6sseldd 3753 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝑋 ∈ (SubGrp‘ℂfld)) ∧ 𝐵𝑋𝐶𝑋) → 𝐵 ∈ ℂ)
8 simp3 1132 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝑋 ∈ (SubGrp‘ℂfld)) ∧ 𝐵𝑋𝐶𝑋) → 𝐶𝑋)
95, 8sseldd 3753 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝑋 ∈ (SubGrp‘ℂfld)) ∧ 𝐵𝑋𝐶𝑋) → 𝐶 ∈ ℂ)
101, 7, 9adddid 10266 . . . 4 (((𝐴 ∈ ℂ ∧ 𝑋 ∈ (SubGrp‘ℂfld)) ∧ 𝐵𝑋𝐶𝑋) → (𝐴 · (𝐵 + 𝐶)) = ((𝐴 · 𝐵) + (𝐴 · 𝐶)))
1110fveq2d 6336 . . 3 (((𝐴 ∈ ℂ ∧ 𝑋 ∈ (SubGrp‘ℂfld)) ∧ 𝐵𝑋𝐶𝑋) → (exp‘(𝐴 · (𝐵 + 𝐶))) = (exp‘((𝐴 · 𝐵) + (𝐴 · 𝐶))))
121, 7mulcld 10262 . . . 4 (((𝐴 ∈ ℂ ∧ 𝑋 ∈ (SubGrp‘ℂfld)) ∧ 𝐵𝑋𝐶𝑋) → (𝐴 · 𝐵) ∈ ℂ)
131, 9mulcld 10262 . . . 4 (((𝐴 ∈ ℂ ∧ 𝑋 ∈ (SubGrp‘ℂfld)) ∧ 𝐵𝑋𝐶𝑋) → (𝐴 · 𝐶) ∈ ℂ)
14 efadd 15030 . . . 4 (((𝐴 · 𝐵) ∈ ℂ ∧ (𝐴 · 𝐶) ∈ ℂ) → (exp‘((𝐴 · 𝐵) + (𝐴 · 𝐶))) = ((exp‘(𝐴 · 𝐵)) · (exp‘(𝐴 · 𝐶))))
1512, 13, 14syl2anc 573 . . 3 (((𝐴 ∈ ℂ ∧ 𝑋 ∈ (SubGrp‘ℂfld)) ∧ 𝐵𝑋𝐶𝑋) → (exp‘((𝐴 · 𝐵) + (𝐴 · 𝐶))) = ((exp‘(𝐴 · 𝐵)) · (exp‘(𝐴 · 𝐶))))
1611, 15eqtrd 2805 . 2 (((𝐴 ∈ ℂ ∧ 𝑋 ∈ (SubGrp‘ℂfld)) ∧ 𝐵𝑋𝐶𝑋) → (exp‘(𝐴 · (𝐵 + 𝐶))) = ((exp‘(𝐴 · 𝐵)) · (exp‘(𝐴 · 𝐶))))
17 efgh.1 . . . . 5 𝐹 = (𝑥𝑋 ↦ (exp‘(𝐴 · 𝑥)))
18 oveq2 6801 . . . . . . 7 (𝑥 = 𝑦 → (𝐴 · 𝑥) = (𝐴 · 𝑦))
1918fveq2d 6336 . . . . . 6 (𝑥 = 𝑦 → (exp‘(𝐴 · 𝑥)) = (exp‘(𝐴 · 𝑦)))
2019cbvmptv 4884 . . . . 5 (𝑥𝑋 ↦ (exp‘(𝐴 · 𝑥))) = (𝑦𝑋 ↦ (exp‘(𝐴 · 𝑦)))
2117, 20eqtri 2793 . . . 4 𝐹 = (𝑦𝑋 ↦ (exp‘(𝐴 · 𝑦)))
2221a1i 11 . . 3 (((𝐴 ∈ ℂ ∧ 𝑋 ∈ (SubGrp‘ℂfld)) ∧ 𝐵𝑋𝐶𝑋) → 𝐹 = (𝑦𝑋 ↦ (exp‘(𝐴 · 𝑦))))
23 oveq2 6801 . . . . 5 (𝑦 = (𝐵 + 𝐶) → (𝐴 · 𝑦) = (𝐴 · (𝐵 + 𝐶)))
2423fveq2d 6336 . . . 4 (𝑦 = (𝐵 + 𝐶) → (exp‘(𝐴 · 𝑦)) = (exp‘(𝐴 · (𝐵 + 𝐶))))
2524adantl 467 . . 3 ((((𝐴 ∈ ℂ ∧ 𝑋 ∈ (SubGrp‘ℂfld)) ∧ 𝐵𝑋𝐶𝑋) ∧ 𝑦 = (𝐵 + 𝐶)) → (exp‘(𝐴 · 𝑦)) = (exp‘(𝐴 · (𝐵 + 𝐶))))
26 cnfldadd 19966 . . . . 5 + = (+g‘ℂfld)
2726subgcl 17812 . . . 4 ((𝑋 ∈ (SubGrp‘ℂfld) ∧ 𝐵𝑋𝐶𝑋) → (𝐵 + 𝐶) ∈ 𝑋)
28273adant1l 1185 . . 3 (((𝐴 ∈ ℂ ∧ 𝑋 ∈ (SubGrp‘ℂfld)) ∧ 𝐵𝑋𝐶𝑋) → (𝐵 + 𝐶) ∈ 𝑋)
29 fvexd 6344 . . 3 (((𝐴 ∈ ℂ ∧ 𝑋 ∈ (SubGrp‘ℂfld)) ∧ 𝐵𝑋𝐶𝑋) → (exp‘(𝐴 · (𝐵 + 𝐶))) ∈ V)
3022, 25, 28, 29fvmptd 6430 . 2 (((𝐴 ∈ ℂ ∧ 𝑋 ∈ (SubGrp‘ℂfld)) ∧ 𝐵𝑋𝐶𝑋) → (𝐹‘(𝐵 + 𝐶)) = (exp‘(𝐴 · (𝐵 + 𝐶))))
31 oveq2 6801 . . . . . 6 (𝑦 = 𝐵 → (𝐴 · 𝑦) = (𝐴 · 𝐵))
3231fveq2d 6336 . . . . 5 (𝑦 = 𝐵 → (exp‘(𝐴 · 𝑦)) = (exp‘(𝐴 · 𝐵)))
3332adantl 467 . . . 4 ((((𝐴 ∈ ℂ ∧ 𝑋 ∈ (SubGrp‘ℂfld)) ∧ 𝐵𝑋𝐶𝑋) ∧ 𝑦 = 𝐵) → (exp‘(𝐴 · 𝑦)) = (exp‘(𝐴 · 𝐵)))
34 fvexd 6344 . . . 4 (((𝐴 ∈ ℂ ∧ 𝑋 ∈ (SubGrp‘ℂfld)) ∧ 𝐵𝑋𝐶𝑋) → (exp‘(𝐴 · 𝐵)) ∈ V)
3522, 33, 6, 34fvmptd 6430 . . 3 (((𝐴 ∈ ℂ ∧ 𝑋 ∈ (SubGrp‘ℂfld)) ∧ 𝐵𝑋𝐶𝑋) → (𝐹𝐵) = (exp‘(𝐴 · 𝐵)))
36 oveq2 6801 . . . . . 6 (𝑦 = 𝐶 → (𝐴 · 𝑦) = (𝐴 · 𝐶))
3736fveq2d 6336 . . . . 5 (𝑦 = 𝐶 → (exp‘(𝐴 · 𝑦)) = (exp‘(𝐴 · 𝐶)))
3837adantl 467 . . . 4 ((((𝐴 ∈ ℂ ∧ 𝑋 ∈ (SubGrp‘ℂfld)) ∧ 𝐵𝑋𝐶𝑋) ∧ 𝑦 = 𝐶) → (exp‘(𝐴 · 𝑦)) = (exp‘(𝐴 · 𝐶)))
39 fvexd 6344 . . . 4 (((𝐴 ∈ ℂ ∧ 𝑋 ∈ (SubGrp‘ℂfld)) ∧ 𝐵𝑋𝐶𝑋) → (exp‘(𝐴 · 𝐶)) ∈ V)
4022, 38, 8, 39fvmptd 6430 . . 3 (((𝐴 ∈ ℂ ∧ 𝑋 ∈ (SubGrp‘ℂfld)) ∧ 𝐵𝑋𝐶𝑋) → (𝐹𝐶) = (exp‘(𝐴 · 𝐶)))
4135, 40oveq12d 6811 . 2 (((𝐴 ∈ ℂ ∧ 𝑋 ∈ (SubGrp‘ℂfld)) ∧ 𝐵𝑋𝐶𝑋) → ((𝐹𝐵) · (𝐹𝐶)) = ((exp‘(𝐴 · 𝐵)) · (exp‘(𝐴 · 𝐶))))
4216, 30, 413eqtr4d 2815 1 (((𝐴 ∈ ℂ ∧ 𝑋 ∈ (SubGrp‘ℂfld)) ∧ 𝐵𝑋𝐶𝑋) → (𝐹‘(𝐵 + 𝐶)) = ((𝐹𝐵) · (𝐹𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 382  w3a 1071   = wceq 1631  wcel 2145  Vcvv 3351  wss 3723  cmpt 4863  cfv 6031  (class class class)co 6793  cc 10136   + caddc 10141   · cmul 10143  expce 14998  SubGrpcsubg 17796  fldccnfld 19961
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-rep 4904  ax-sep 4915  ax-nul 4923  ax-pow 4974  ax-pr 5034  ax-un 7096  ax-inf2 8702  ax-cnex 10194  ax-resscn 10195  ax-1cn 10196  ax-icn 10197  ax-addcl 10198  ax-addrcl 10199  ax-mulcl 10200  ax-mulrcl 10201  ax-mulcom 10202  ax-addass 10203  ax-mulass 10204  ax-distr 10205  ax-i2m1 10206  ax-1ne0 10207  ax-1rid 10208  ax-rnegex 10209  ax-rrecex 10210  ax-cnre 10211  ax-pre-lttri 10212  ax-pre-lttrn 10213  ax-pre-ltadd 10214  ax-pre-mulgt0 10215  ax-pre-sup 10216  ax-addf 10217  ax-mulf 10218
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3or 1072  df-3an 1073  df-tru 1634  df-fal 1637  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-pss 3739  df-nul 4064  df-if 4226  df-pw 4299  df-sn 4317  df-pr 4319  df-tp 4321  df-op 4323  df-uni 4575  df-int 4612  df-iun 4656  df-br 4787  df-opab 4847  df-mpt 4864  df-tr 4887  df-id 5157  df-eprel 5162  df-po 5170  df-so 5171  df-fr 5208  df-se 5209  df-we 5210  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-pred 5823  df-ord 5869  df-on 5870  df-lim 5871  df-suc 5872  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039  df-isom 6040  df-riota 6754  df-ov 6796  df-oprab 6797  df-mpt2 6798  df-om 7213  df-1st 7315  df-2nd 7316  df-wrecs 7559  df-recs 7621  df-rdg 7659  df-1o 7713  df-oadd 7717  df-er 7896  df-pm 8012  df-en 8110  df-dom 8111  df-sdom 8112  df-fin 8113  df-sup 8504  df-inf 8505  df-oi 8571  df-card 8965  df-pnf 10278  df-mnf 10279  df-xr 10280  df-ltxr 10281  df-le 10282  df-sub 10470  df-neg 10471  df-div 10887  df-nn 11223  df-2 11281  df-3 11282  df-4 11283  df-5 11284  df-6 11285  df-7 11286  df-8 11287  df-9 11288  df-n0 11495  df-z 11580  df-dec 11696  df-uz 11889  df-rp 12036  df-ico 12386  df-fz 12534  df-fzo 12674  df-fl 12801  df-seq 13009  df-exp 13068  df-fac 13265  df-bc 13294  df-hash 13322  df-shft 14015  df-cj 14047  df-re 14048  df-im 14049  df-sqrt 14183  df-abs 14184  df-limsup 14410  df-clim 14427  df-rlim 14428  df-sum 14625  df-ef 15004  df-struct 16066  df-ndx 16067  df-slot 16068  df-base 16070  df-sets 16071  df-ress 16072  df-plusg 16162  df-mulr 16163  df-starv 16164  df-tset 16168  df-ple 16169  df-ds 16172  df-unif 16173  df-mgm 17450  df-sgrp 17492  df-mnd 17503  df-grp 17633  df-subg 17799  df-cnfld 19962
This theorem is referenced by:  efabl  24517
  Copyright terms: Public domain W3C validator