![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > efger | Structured version Visualization version GIF version |
Description: Value of the free group construction. (Contributed by Mario Carneiro, 27-Sep-2015.) (Revised by Mario Carneiro, 27-Feb-2016.) |
Ref | Expression |
---|---|
efgval.w | ⊢ 𝑊 = ( I ‘Word (𝐼 × 2𝑜)) |
efgval.r | ⊢ ∼ = ( ~FG ‘𝐼) |
Ref | Expression |
---|---|
efger | ⊢ ∼ Er 𝑊 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | efgval.w | . . . . 5 ⊢ 𝑊 = ( I ‘Word (𝐼 × 2𝑜)) | |
2 | 1 | efglem 18336 | . . . 4 ⊢ ∃𝑟(𝑟 Er 𝑊 ∧ ∀𝑥 ∈ 𝑊 ∀𝑛 ∈ (0...(♯‘𝑥))∀𝑦 ∈ 𝐼 ∀𝑧 ∈ 2𝑜 𝑥𝑟(𝑥 splice 〈𝑛, 𝑛, 〈“〈𝑦, 𝑧〉〈𝑦, (1𝑜 ∖ 𝑧)〉”〉〉)) |
3 | abn0 4101 | . . . 4 ⊢ ({𝑟 ∣ (𝑟 Er 𝑊 ∧ ∀𝑥 ∈ 𝑊 ∀𝑛 ∈ (0...(♯‘𝑥))∀𝑦 ∈ 𝐼 ∀𝑧 ∈ 2𝑜 𝑥𝑟(𝑥 splice 〈𝑛, 𝑛, 〈“〈𝑦, 𝑧〉〈𝑦, (1𝑜 ∖ 𝑧)〉”〉〉))} ≠ ∅ ↔ ∃𝑟(𝑟 Er 𝑊 ∧ ∀𝑥 ∈ 𝑊 ∀𝑛 ∈ (0...(♯‘𝑥))∀𝑦 ∈ 𝐼 ∀𝑧 ∈ 2𝑜 𝑥𝑟(𝑥 splice 〈𝑛, 𝑛, 〈“〈𝑦, 𝑧〉〈𝑦, (1𝑜 ∖ 𝑧)〉”〉〉))) | |
4 | 2, 3 | mpbir 221 | . . 3 ⊢ {𝑟 ∣ (𝑟 Er 𝑊 ∧ ∀𝑥 ∈ 𝑊 ∀𝑛 ∈ (0...(♯‘𝑥))∀𝑦 ∈ 𝐼 ∀𝑧 ∈ 2𝑜 𝑥𝑟(𝑥 splice 〈𝑛, 𝑛, 〈“〈𝑦, 𝑧〉〈𝑦, (1𝑜 ∖ 𝑧)〉”〉〉))} ≠ ∅ |
5 | ereq1 7903 | . . . . 5 ⊢ (𝑤 = 𝑟 → (𝑤 Er 𝑊 ↔ 𝑟 Er 𝑊)) | |
6 | 5 | ralab2 3523 | . . . 4 ⊢ (∀𝑤 ∈ {𝑟 ∣ (𝑟 Er 𝑊 ∧ ∀𝑥 ∈ 𝑊 ∀𝑛 ∈ (0...(♯‘𝑥))∀𝑦 ∈ 𝐼 ∀𝑧 ∈ 2𝑜 𝑥𝑟(𝑥 splice 〈𝑛, 𝑛, 〈“〈𝑦, 𝑧〉〈𝑦, (1𝑜 ∖ 𝑧)〉”〉〉))}𝑤 Er 𝑊 ↔ ∀𝑟((𝑟 Er 𝑊 ∧ ∀𝑥 ∈ 𝑊 ∀𝑛 ∈ (0...(♯‘𝑥))∀𝑦 ∈ 𝐼 ∀𝑧 ∈ 2𝑜 𝑥𝑟(𝑥 splice 〈𝑛, 𝑛, 〈“〈𝑦, 𝑧〉〈𝑦, (1𝑜 ∖ 𝑧)〉”〉〉)) → 𝑟 Er 𝑊)) |
7 | simpl 468 | . . . 4 ⊢ ((𝑟 Er 𝑊 ∧ ∀𝑥 ∈ 𝑊 ∀𝑛 ∈ (0...(♯‘𝑥))∀𝑦 ∈ 𝐼 ∀𝑧 ∈ 2𝑜 𝑥𝑟(𝑥 splice 〈𝑛, 𝑛, 〈“〈𝑦, 𝑧〉〈𝑦, (1𝑜 ∖ 𝑧)〉”〉〉)) → 𝑟 Er 𝑊) | |
8 | 6, 7 | mpgbir 1874 | . . 3 ⊢ ∀𝑤 ∈ {𝑟 ∣ (𝑟 Er 𝑊 ∧ ∀𝑥 ∈ 𝑊 ∀𝑛 ∈ (0...(♯‘𝑥))∀𝑦 ∈ 𝐼 ∀𝑧 ∈ 2𝑜 𝑥𝑟(𝑥 splice 〈𝑛, 𝑛, 〈“〈𝑦, 𝑧〉〈𝑦, (1𝑜 ∖ 𝑧)〉”〉〉))}𝑤 Er 𝑊 |
9 | iiner 7971 | . . 3 ⊢ (({𝑟 ∣ (𝑟 Er 𝑊 ∧ ∀𝑥 ∈ 𝑊 ∀𝑛 ∈ (0...(♯‘𝑥))∀𝑦 ∈ 𝐼 ∀𝑧 ∈ 2𝑜 𝑥𝑟(𝑥 splice 〈𝑛, 𝑛, 〈“〈𝑦, 𝑧〉〈𝑦, (1𝑜 ∖ 𝑧)〉”〉〉))} ≠ ∅ ∧ ∀𝑤 ∈ {𝑟 ∣ (𝑟 Er 𝑊 ∧ ∀𝑥 ∈ 𝑊 ∀𝑛 ∈ (0...(♯‘𝑥))∀𝑦 ∈ 𝐼 ∀𝑧 ∈ 2𝑜 𝑥𝑟(𝑥 splice 〈𝑛, 𝑛, 〈“〈𝑦, 𝑧〉〈𝑦, (1𝑜 ∖ 𝑧)〉”〉〉))}𝑤 Er 𝑊) → ∩ 𝑤 ∈ {𝑟 ∣ (𝑟 Er 𝑊 ∧ ∀𝑥 ∈ 𝑊 ∀𝑛 ∈ (0...(♯‘𝑥))∀𝑦 ∈ 𝐼 ∀𝑧 ∈ 2𝑜 𝑥𝑟(𝑥 splice 〈𝑛, 𝑛, 〈“〈𝑦, 𝑧〉〈𝑦, (1𝑜 ∖ 𝑧)〉”〉〉))}𝑤 Er 𝑊) | |
10 | 4, 8, 9 | mp2an 672 | . 2 ⊢ ∩ 𝑤 ∈ {𝑟 ∣ (𝑟 Er 𝑊 ∧ ∀𝑥 ∈ 𝑊 ∀𝑛 ∈ (0...(♯‘𝑥))∀𝑦 ∈ 𝐼 ∀𝑧 ∈ 2𝑜 𝑥𝑟(𝑥 splice 〈𝑛, 𝑛, 〈“〈𝑦, 𝑧〉〈𝑦, (1𝑜 ∖ 𝑧)〉”〉〉))}𝑤 Er 𝑊 |
11 | efgval.r | . . . . 5 ⊢ ∼ = ( ~FG ‘𝐼) | |
12 | 1, 11 | efgval 18337 | . . . 4 ⊢ ∼ = ∩ {𝑟 ∣ (𝑟 Er 𝑊 ∧ ∀𝑥 ∈ 𝑊 ∀𝑛 ∈ (0...(♯‘𝑥))∀𝑦 ∈ 𝐼 ∀𝑧 ∈ 2𝑜 𝑥𝑟(𝑥 splice 〈𝑛, 𝑛, 〈“〈𝑦, 𝑧〉〈𝑦, (1𝑜 ∖ 𝑧)〉”〉〉))} |
13 | intiin 4708 | . . . 4 ⊢ ∩ {𝑟 ∣ (𝑟 Er 𝑊 ∧ ∀𝑥 ∈ 𝑊 ∀𝑛 ∈ (0...(♯‘𝑥))∀𝑦 ∈ 𝐼 ∀𝑧 ∈ 2𝑜 𝑥𝑟(𝑥 splice 〈𝑛, 𝑛, 〈“〈𝑦, 𝑧〉〈𝑦, (1𝑜 ∖ 𝑧)〉”〉〉))} = ∩ 𝑤 ∈ {𝑟 ∣ (𝑟 Er 𝑊 ∧ ∀𝑥 ∈ 𝑊 ∀𝑛 ∈ (0...(♯‘𝑥))∀𝑦 ∈ 𝐼 ∀𝑧 ∈ 2𝑜 𝑥𝑟(𝑥 splice 〈𝑛, 𝑛, 〈“〈𝑦, 𝑧〉〈𝑦, (1𝑜 ∖ 𝑧)〉”〉〉))}𝑤 | |
14 | 12, 13 | eqtri 2793 | . . 3 ⊢ ∼ = ∩ 𝑤 ∈ {𝑟 ∣ (𝑟 Er 𝑊 ∧ ∀𝑥 ∈ 𝑊 ∀𝑛 ∈ (0...(♯‘𝑥))∀𝑦 ∈ 𝐼 ∀𝑧 ∈ 2𝑜 𝑥𝑟(𝑥 splice 〈𝑛, 𝑛, 〈“〈𝑦, 𝑧〉〈𝑦, (1𝑜 ∖ 𝑧)〉”〉〉))}𝑤 |
15 | ereq1 7903 | . . 3 ⊢ ( ∼ = ∩ 𝑤 ∈ {𝑟 ∣ (𝑟 Er 𝑊 ∧ ∀𝑥 ∈ 𝑊 ∀𝑛 ∈ (0...(♯‘𝑥))∀𝑦 ∈ 𝐼 ∀𝑧 ∈ 2𝑜 𝑥𝑟(𝑥 splice 〈𝑛, 𝑛, 〈“〈𝑦, 𝑧〉〈𝑦, (1𝑜 ∖ 𝑧)〉”〉〉))}𝑤 → ( ∼ Er 𝑊 ↔ ∩ 𝑤 ∈ {𝑟 ∣ (𝑟 Er 𝑊 ∧ ∀𝑥 ∈ 𝑊 ∀𝑛 ∈ (0...(♯‘𝑥))∀𝑦 ∈ 𝐼 ∀𝑧 ∈ 2𝑜 𝑥𝑟(𝑥 splice 〈𝑛, 𝑛, 〈“〈𝑦, 𝑧〉〈𝑦, (1𝑜 ∖ 𝑧)〉”〉〉))}𝑤 Er 𝑊)) | |
16 | 14, 15 | ax-mp 5 | . 2 ⊢ ( ∼ Er 𝑊 ↔ ∩ 𝑤 ∈ {𝑟 ∣ (𝑟 Er 𝑊 ∧ ∀𝑥 ∈ 𝑊 ∀𝑛 ∈ (0...(♯‘𝑥))∀𝑦 ∈ 𝐼 ∀𝑧 ∈ 2𝑜 𝑥𝑟(𝑥 splice 〈𝑛, 𝑛, 〈“〈𝑦, 𝑧〉〈𝑦, (1𝑜 ∖ 𝑧)〉”〉〉))}𝑤 Er 𝑊) |
17 | 10, 16 | mpbir 221 | 1 ⊢ ∼ Er 𝑊 |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 382 = wceq 1631 ∃wex 1852 {cab 2757 ≠ wne 2943 ∀wral 3061 ∖ cdif 3720 ∅c0 4063 〈cop 4322 〈cotp 4324 ∩ cint 4611 ∩ ciin 4655 class class class wbr 4786 I cid 5156 × cxp 5247 ‘cfv 6031 (class class class)co 6793 1𝑜c1o 7706 2𝑜c2o 7707 Er wer 7893 0cc0 10138 ...cfz 12533 ♯chash 13321 Word cword 13487 splice csplice 13492 〈“cs2 13795 ~FG cefg 18326 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 ax-5 1991 ax-6 2057 ax-7 2093 ax-8 2147 ax-9 2154 ax-10 2174 ax-11 2190 ax-12 2203 ax-13 2408 ax-ext 2751 ax-rep 4904 ax-sep 4915 ax-nul 4923 ax-pow 4974 ax-pr 5034 ax-un 7096 ax-cnex 10194 ax-resscn 10195 ax-1cn 10196 ax-icn 10197 ax-addcl 10198 ax-addrcl 10199 ax-mulcl 10200 ax-mulrcl 10201 ax-mulcom 10202 ax-addass 10203 ax-mulass 10204 ax-distr 10205 ax-i2m1 10206 ax-1ne0 10207 ax-1rid 10208 ax-rnegex 10209 ax-rrecex 10210 ax-cnre 10211 ax-pre-lttri 10212 ax-pre-lttrn 10213 ax-pre-ltadd 10214 ax-pre-mulgt0 10215 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 835 df-3or 1072 df-3an 1073 df-tru 1634 df-ex 1853 df-nf 1858 df-sb 2050 df-eu 2622 df-mo 2623 df-clab 2758 df-cleq 2764 df-clel 2767 df-nfc 2902 df-ne 2944 df-nel 3047 df-ral 3066 df-rex 3067 df-reu 3068 df-rab 3070 df-v 3353 df-sbc 3588 df-csb 3683 df-dif 3726 df-un 3728 df-in 3730 df-ss 3737 df-pss 3739 df-nul 4064 df-if 4226 df-pw 4299 df-sn 4317 df-pr 4319 df-tp 4321 df-op 4323 df-ot 4325 df-uni 4575 df-int 4612 df-iun 4656 df-iin 4657 df-br 4787 df-opab 4847 df-mpt 4864 df-tr 4887 df-id 5157 df-eprel 5162 df-po 5170 df-so 5171 df-fr 5208 df-we 5210 df-xp 5255 df-rel 5256 df-cnv 5257 df-co 5258 df-dm 5259 df-rn 5260 df-res 5261 df-ima 5262 df-pred 5823 df-ord 5869 df-on 5870 df-lim 5871 df-suc 5872 df-iota 5994 df-fun 6033 df-fn 6034 df-f 6035 df-f1 6036 df-fo 6037 df-f1o 6038 df-fv 6039 df-riota 6754 df-ov 6796 df-oprab 6797 df-mpt2 6798 df-om 7213 df-1st 7315 df-2nd 7316 df-wrecs 7559 df-recs 7621 df-rdg 7659 df-1o 7713 df-2o 7714 df-oadd 7717 df-er 7896 df-map 8011 df-pm 8012 df-en 8110 df-dom 8111 df-sdom 8112 df-fin 8113 df-card 8965 df-pnf 10278 df-mnf 10279 df-xr 10280 df-ltxr 10281 df-le 10282 df-sub 10470 df-neg 10471 df-nn 11223 df-n0 11495 df-z 11580 df-uz 11889 df-fz 12534 df-fzo 12674 df-hash 13322 df-word 13495 df-concat 13497 df-s1 13498 df-substr 13499 df-splice 13500 df-s2 13802 df-efg 18329 |
This theorem is referenced by: efginvrel2 18347 efgsrel 18354 efgredeu 18372 efgred2 18373 efgcpbllemb 18375 efgcpbl2 18377 frgpcpbl 18379 frgp0 18380 frgpadd 18383 frgpinv 18384 frgpmhm 18385 frgpuplem 18392 frgpupf 18393 frgpupval 18394 frgpup3lem 18397 frgpnabllem1 18483 frgpnabllem2 18484 |
Copyright terms: Public domain | W3C validator |