MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  efgcpbllema Structured version   Visualization version   GIF version

Theorem efgcpbllema 18367
Description: Lemma for efgrelex 18364. Define an auxiliary equivalence relation 𝐿 such that 𝐴𝐿𝐵 if there are sequences from 𝐴 to 𝐵 passing through the same reduced word. (Contributed by Mario Carneiro, 1-Oct-2015.)
Hypotheses
Ref Expression
efgval.w 𝑊 = ( I ‘Word (𝐼 × 2𝑜))
efgval.r = ( ~FG𝐼)
efgval2.m 𝑀 = (𝑦𝐼, 𝑧 ∈ 2𝑜 ↦ ⟨𝑦, (1𝑜𝑧)⟩)
efgval2.t 𝑇 = (𝑣𝑊 ↦ (𝑛 ∈ (0...(♯‘𝑣)), 𝑤 ∈ (𝐼 × 2𝑜) ↦ (𝑣 splice ⟨𝑛, 𝑛, ⟨“𝑤(𝑀𝑤)”⟩⟩)))
efgred.d 𝐷 = (𝑊 𝑥𝑊 ran (𝑇𝑥))
efgred.s 𝑆 = (𝑚 ∈ {𝑡 ∈ (Word 𝑊 ∖ {∅}) ∣ ((𝑡‘0) ∈ 𝐷 ∧ ∀𝑘 ∈ (1..^(♯‘𝑡))(𝑡𝑘) ∈ ran (𝑇‘(𝑡‘(𝑘 − 1))))} ↦ (𝑚‘((♯‘𝑚) − 1)))
efgcpbllem.1 𝐿 = {⟨𝑖, 𝑗⟩ ∣ ({𝑖, 𝑗} ⊆ 𝑊 ∧ ((𝐴 ++ 𝑖) ++ 𝐵) ((𝐴 ++ 𝑗) ++ 𝐵))}
Assertion
Ref Expression
efgcpbllema (𝑋𝐿𝑌 ↔ (𝑋𝑊𝑌𝑊 ∧ ((𝐴 ++ 𝑋) ++ 𝐵) ((𝐴 ++ 𝑌) ++ 𝐵)))
Distinct variable groups:   𝑖,𝑗,𝐴   𝑦,𝑧   𝑡,𝑛,𝑣,𝑤,𝑦,𝑧   𝑖,𝑚,𝑛,𝑡,𝑣,𝑤,𝑥,𝑀,𝑗   𝑖,𝑘,𝑇,𝑗,𝑚,𝑡,𝑥   𝑖,𝑋,𝑗   𝑦,𝑖,𝑧,𝑊,𝑗   𝑘,𝑛,𝑣,𝑤,𝑦,𝑧,𝑊,𝑚,𝑡,𝑥   ,𝑖,𝑗,𝑚,𝑡,𝑥,𝑦,𝑧   𝐵,𝑖,𝑗   𝑆,𝑖,𝑗   𝑖,𝑌,𝑗   𝑖,𝐼,𝑗,𝑚,𝑛,𝑡,𝑣,𝑤,𝑥,𝑦,𝑧   𝐷,𝑖,𝑗,𝑚,𝑡
Allowed substitution hints:   𝐴(𝑥,𝑦,𝑧,𝑤,𝑣,𝑡,𝑘,𝑚,𝑛)   𝐵(𝑥,𝑦,𝑧,𝑤,𝑣,𝑡,𝑘,𝑚,𝑛)   𝐷(𝑥,𝑦,𝑧,𝑤,𝑣,𝑘,𝑛)   (𝑤,𝑣,𝑘,𝑛)   𝑆(𝑥,𝑦,𝑧,𝑤,𝑣,𝑡,𝑘,𝑚,𝑛)   𝑇(𝑦,𝑧,𝑤,𝑣,𝑛)   𝐼(𝑘)   𝐿(𝑥,𝑦,𝑧,𝑤,𝑣,𝑡,𝑖,𝑗,𝑘,𝑚,𝑛)   𝑀(𝑦,𝑧,𝑘)   𝑋(𝑥,𝑦,𝑧,𝑤,𝑣,𝑡,𝑘,𝑚,𝑛)   𝑌(𝑥,𝑦,𝑧,𝑤,𝑣,𝑡,𝑘,𝑚,𝑛)

Proof of Theorem efgcpbllema
StepHypRef Expression
1 oveq2 6821 . . . . 5 (𝑖 = 𝑋 → (𝐴 ++ 𝑖) = (𝐴 ++ 𝑋))
21oveq1d 6828 . . . 4 (𝑖 = 𝑋 → ((𝐴 ++ 𝑖) ++ 𝐵) = ((𝐴 ++ 𝑋) ++ 𝐵))
3 oveq2 6821 . . . . 5 (𝑗 = 𝑌 → (𝐴 ++ 𝑗) = (𝐴 ++ 𝑌))
43oveq1d 6828 . . . 4 (𝑗 = 𝑌 → ((𝐴 ++ 𝑗) ++ 𝐵) = ((𝐴 ++ 𝑌) ++ 𝐵))
52, 4breqan12d 4820 . . 3 ((𝑖 = 𝑋𝑗 = 𝑌) → (((𝐴 ++ 𝑖) ++ 𝐵) ((𝐴 ++ 𝑗) ++ 𝐵) ↔ ((𝐴 ++ 𝑋) ++ 𝐵) ((𝐴 ++ 𝑌) ++ 𝐵)))
6 efgcpbllem.1 . . . 4 𝐿 = {⟨𝑖, 𝑗⟩ ∣ ({𝑖, 𝑗} ⊆ 𝑊 ∧ ((𝐴 ++ 𝑖) ++ 𝐵) ((𝐴 ++ 𝑗) ++ 𝐵))}
7 vex 3343 . . . . . . 7 𝑖 ∈ V
8 vex 3343 . . . . . . 7 𝑗 ∈ V
97, 8prss 4496 . . . . . 6 ((𝑖𝑊𝑗𝑊) ↔ {𝑖, 𝑗} ⊆ 𝑊)
109anbi1i 733 . . . . 5 (((𝑖𝑊𝑗𝑊) ∧ ((𝐴 ++ 𝑖) ++ 𝐵) ((𝐴 ++ 𝑗) ++ 𝐵)) ↔ ({𝑖, 𝑗} ⊆ 𝑊 ∧ ((𝐴 ++ 𝑖) ++ 𝐵) ((𝐴 ++ 𝑗) ++ 𝐵)))
1110opabbii 4869 . . . 4 {⟨𝑖, 𝑗⟩ ∣ ((𝑖𝑊𝑗𝑊) ∧ ((𝐴 ++ 𝑖) ++ 𝐵) ((𝐴 ++ 𝑗) ++ 𝐵))} = {⟨𝑖, 𝑗⟩ ∣ ({𝑖, 𝑗} ⊆ 𝑊 ∧ ((𝐴 ++ 𝑖) ++ 𝐵) ((𝐴 ++ 𝑗) ++ 𝐵))}
126, 11eqtr4i 2785 . . 3 𝐿 = {⟨𝑖, 𝑗⟩ ∣ ((𝑖𝑊𝑗𝑊) ∧ ((𝐴 ++ 𝑖) ++ 𝐵) ((𝐴 ++ 𝑗) ++ 𝐵))}
135, 12brab2a 5351 . 2 (𝑋𝐿𝑌 ↔ ((𝑋𝑊𝑌𝑊) ∧ ((𝐴 ++ 𝑋) ++ 𝐵) ((𝐴 ++ 𝑌) ++ 𝐵)))
14 df-3an 1074 . 2 ((𝑋𝑊𝑌𝑊 ∧ ((𝐴 ++ 𝑋) ++ 𝐵) ((𝐴 ++ 𝑌) ++ 𝐵)) ↔ ((𝑋𝑊𝑌𝑊) ∧ ((𝐴 ++ 𝑋) ++ 𝐵) ((𝐴 ++ 𝑌) ++ 𝐵)))
1513, 14bitr4i 267 1 (𝑋𝐿𝑌 ↔ (𝑋𝑊𝑌𝑊 ∧ ((𝐴 ++ 𝑋) ++ 𝐵) ((𝐴 ++ 𝑌) ++ 𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wb 196  wa 383  w3a 1072   = wceq 1632  wcel 2139  wral 3050  {crab 3054  cdif 3712  wss 3715  c0 4058  {csn 4321  {cpr 4323  cop 4327  cotp 4329   ciun 4672   class class class wbr 4804  {copab 4864  cmpt 4881   I cid 5173   × cxp 5264  ran crn 5267  cfv 6049  (class class class)co 6813  cmpt2 6815  1𝑜c1o 7722  2𝑜c2o 7723  0cc0 10128  1c1 10129  cmin 10458  ...cfz 12519  ..^cfzo 12659  chash 13311  Word cword 13477   ++ cconcat 13479   splice csplice 13482  ⟨“cs2 13786   ~FG cefg 18319
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-sep 4933  ax-nul 4941  ax-pr 5055
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ral 3055  df-rex 3056  df-rab 3059  df-v 3342  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-nul 4059  df-if 4231  df-sn 4322  df-pr 4324  df-op 4328  df-uni 4589  df-br 4805  df-opab 4865  df-xp 5272  df-iota 6012  df-fv 6057  df-ov 6816
This theorem is referenced by:  efgcpbllemb  18368  efgcpbl  18369
  Copyright terms: Public domain W3C validator