![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > efgcpbl2 | Structured version Visualization version GIF version |
Description: Two extension sequences have related endpoints iff they have the same base. (Contributed by Mario Carneiro, 1-Oct-2015.) |
Ref | Expression |
---|---|
efgval.w | ⊢ 𝑊 = ( I ‘Word (𝐼 × 2𝑜)) |
efgval.r | ⊢ ∼ = ( ~FG ‘𝐼) |
efgval2.m | ⊢ 𝑀 = (𝑦 ∈ 𝐼, 𝑧 ∈ 2𝑜 ↦ 〈𝑦, (1𝑜 ∖ 𝑧)〉) |
efgval2.t | ⊢ 𝑇 = (𝑣 ∈ 𝑊 ↦ (𝑛 ∈ (0...(♯‘𝑣)), 𝑤 ∈ (𝐼 × 2𝑜) ↦ (𝑣 splice 〈𝑛, 𝑛, 〈“𝑤(𝑀‘𝑤)”〉〉))) |
efgred.d | ⊢ 𝐷 = (𝑊 ∖ ∪ 𝑥 ∈ 𝑊 ran (𝑇‘𝑥)) |
efgred.s | ⊢ 𝑆 = (𝑚 ∈ {𝑡 ∈ (Word 𝑊 ∖ {∅}) ∣ ((𝑡‘0) ∈ 𝐷 ∧ ∀𝑘 ∈ (1..^(♯‘𝑡))(𝑡‘𝑘) ∈ ran (𝑇‘(𝑡‘(𝑘 − 1))))} ↦ (𝑚‘((♯‘𝑚) − 1))) |
Ref | Expression |
---|---|
efgcpbl2 | ⊢ ((𝐴 ∼ 𝑋 ∧ 𝐵 ∼ 𝑌) → (𝐴 ++ 𝐵) ∼ (𝑋 ++ 𝑌)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | efgval.w | . . . 4 ⊢ 𝑊 = ( I ‘Word (𝐼 × 2𝑜)) | |
2 | efgval.r | . . . 4 ⊢ ∼ = ( ~FG ‘𝐼) | |
3 | 1, 2 | efger 18344 | . . 3 ⊢ ∼ Er 𝑊 |
4 | 3 | a1i 11 | . 2 ⊢ ((𝐴 ∼ 𝑋 ∧ 𝐵 ∼ 𝑌) → ∼ Er 𝑊) |
5 | simpl 475 | . . . . 5 ⊢ ((𝐴 ∼ 𝑋 ∧ 𝐵 ∼ 𝑌) → 𝐴 ∼ 𝑋) | |
6 | 4, 5 | ercl 7905 | . . . 4 ⊢ ((𝐴 ∼ 𝑋 ∧ 𝐵 ∼ 𝑌) → 𝐴 ∈ 𝑊) |
7 | wrd0 13529 | . . . . 5 ⊢ ∅ ∈ Word (𝐼 × 2𝑜) | |
8 | 1 | efgrcl 18341 | . . . . . . 7 ⊢ (𝐴 ∈ 𝑊 → (𝐼 ∈ V ∧ 𝑊 = Word (𝐼 × 2𝑜))) |
9 | 6, 8 | syl 17 | . . . . . 6 ⊢ ((𝐴 ∼ 𝑋 ∧ 𝐵 ∼ 𝑌) → (𝐼 ∈ V ∧ 𝑊 = Word (𝐼 × 2𝑜))) |
10 | 9 | simprd 483 | . . . . 5 ⊢ ((𝐴 ∼ 𝑋 ∧ 𝐵 ∼ 𝑌) → 𝑊 = Word (𝐼 × 2𝑜)) |
11 | 7, 10 | syl5eleqr 2855 | . . . 4 ⊢ ((𝐴 ∼ 𝑋 ∧ 𝐵 ∼ 𝑌) → ∅ ∈ 𝑊) |
12 | simpr 480 | . . . 4 ⊢ ((𝐴 ∼ 𝑋 ∧ 𝐵 ∼ 𝑌) → 𝐵 ∼ 𝑌) | |
13 | efgval2.m | . . . . 5 ⊢ 𝑀 = (𝑦 ∈ 𝐼, 𝑧 ∈ 2𝑜 ↦ 〈𝑦, (1𝑜 ∖ 𝑧)〉) | |
14 | efgval2.t | . . . . 5 ⊢ 𝑇 = (𝑣 ∈ 𝑊 ↦ (𝑛 ∈ (0...(♯‘𝑣)), 𝑤 ∈ (𝐼 × 2𝑜) ↦ (𝑣 splice 〈𝑛, 𝑛, 〈“𝑤(𝑀‘𝑤)”〉〉))) | |
15 | efgred.d | . . . . 5 ⊢ 𝐷 = (𝑊 ∖ ∪ 𝑥 ∈ 𝑊 ran (𝑇‘𝑥)) | |
16 | efgred.s | . . . . 5 ⊢ 𝑆 = (𝑚 ∈ {𝑡 ∈ (Word 𝑊 ∖ {∅}) ∣ ((𝑡‘0) ∈ 𝐷 ∧ ∀𝑘 ∈ (1..^(♯‘𝑡))(𝑡‘𝑘) ∈ ran (𝑇‘(𝑡‘(𝑘 − 1))))} ↦ (𝑚‘((♯‘𝑚) − 1))) | |
17 | 1, 2, 13, 14, 15, 16 | efgcpbl 18382 | . . . 4 ⊢ ((𝐴 ∈ 𝑊 ∧ ∅ ∈ 𝑊 ∧ 𝐵 ∼ 𝑌) → ((𝐴 ++ 𝐵) ++ ∅) ∼ ((𝐴 ++ 𝑌) ++ ∅)) |
18 | 6, 11, 12, 17 | syl3anc 1474 | . . 3 ⊢ ((𝐴 ∼ 𝑋 ∧ 𝐵 ∼ 𝑌) → ((𝐴 ++ 𝐵) ++ ∅) ∼ ((𝐴 ++ 𝑌) ++ ∅)) |
19 | 6, 10 | eleqtrd 2850 | . . . . 5 ⊢ ((𝐴 ∼ 𝑋 ∧ 𝐵 ∼ 𝑌) → 𝐴 ∈ Word (𝐼 × 2𝑜)) |
20 | 4, 12 | ercl 7905 | . . . . . 6 ⊢ ((𝐴 ∼ 𝑋 ∧ 𝐵 ∼ 𝑌) → 𝐵 ∈ 𝑊) |
21 | 20, 10 | eleqtrd 2850 | . . . . 5 ⊢ ((𝐴 ∼ 𝑋 ∧ 𝐵 ∼ 𝑌) → 𝐵 ∈ Word (𝐼 × 2𝑜)) |
22 | ccatcl 13559 | . . . . 5 ⊢ ((𝐴 ∈ Word (𝐼 × 2𝑜) ∧ 𝐵 ∈ Word (𝐼 × 2𝑜)) → (𝐴 ++ 𝐵) ∈ Word (𝐼 × 2𝑜)) | |
23 | 19, 21, 22 | syl2anc 693 | . . . 4 ⊢ ((𝐴 ∼ 𝑋 ∧ 𝐵 ∼ 𝑌) → (𝐴 ++ 𝐵) ∈ Word (𝐼 × 2𝑜)) |
24 | ccatrid 13572 | . . . 4 ⊢ ((𝐴 ++ 𝐵) ∈ Word (𝐼 × 2𝑜) → ((𝐴 ++ 𝐵) ++ ∅) = (𝐴 ++ 𝐵)) | |
25 | 23, 24 | syl 17 | . . 3 ⊢ ((𝐴 ∼ 𝑋 ∧ 𝐵 ∼ 𝑌) → ((𝐴 ++ 𝐵) ++ ∅) = (𝐴 ++ 𝐵)) |
26 | 4, 12 | ercl2 7907 | . . . . . 6 ⊢ ((𝐴 ∼ 𝑋 ∧ 𝐵 ∼ 𝑌) → 𝑌 ∈ 𝑊) |
27 | 26, 10 | eleqtrd 2850 | . . . . 5 ⊢ ((𝐴 ∼ 𝑋 ∧ 𝐵 ∼ 𝑌) → 𝑌 ∈ Word (𝐼 × 2𝑜)) |
28 | ccatcl 13559 | . . . . 5 ⊢ ((𝐴 ∈ Word (𝐼 × 2𝑜) ∧ 𝑌 ∈ Word (𝐼 × 2𝑜)) → (𝐴 ++ 𝑌) ∈ Word (𝐼 × 2𝑜)) | |
29 | 19, 27, 28 | syl2anc 693 | . . . 4 ⊢ ((𝐴 ∼ 𝑋 ∧ 𝐵 ∼ 𝑌) → (𝐴 ++ 𝑌) ∈ Word (𝐼 × 2𝑜)) |
30 | ccatrid 13572 | . . . 4 ⊢ ((𝐴 ++ 𝑌) ∈ Word (𝐼 × 2𝑜) → ((𝐴 ++ 𝑌) ++ ∅) = (𝐴 ++ 𝑌)) | |
31 | 29, 30 | syl 17 | . . 3 ⊢ ((𝐴 ∼ 𝑋 ∧ 𝐵 ∼ 𝑌) → ((𝐴 ++ 𝑌) ++ ∅) = (𝐴 ++ 𝑌)) |
32 | 18, 25, 31 | 3brtr3d 4814 | . 2 ⊢ ((𝐴 ∼ 𝑋 ∧ 𝐵 ∼ 𝑌) → (𝐴 ++ 𝐵) ∼ (𝐴 ++ 𝑌)) |
33 | 1, 2, 13, 14, 15, 16 | efgcpbl 18382 | . . . 4 ⊢ ((∅ ∈ 𝑊 ∧ 𝑌 ∈ 𝑊 ∧ 𝐴 ∼ 𝑋) → ((∅ ++ 𝐴) ++ 𝑌) ∼ ((∅ ++ 𝑋) ++ 𝑌)) |
34 | 11, 26, 5, 33 | syl3anc 1474 | . . 3 ⊢ ((𝐴 ∼ 𝑋 ∧ 𝐵 ∼ 𝑌) → ((∅ ++ 𝐴) ++ 𝑌) ∼ ((∅ ++ 𝑋) ++ 𝑌)) |
35 | ccatlid 13571 | . . . . 5 ⊢ (𝐴 ∈ Word (𝐼 × 2𝑜) → (∅ ++ 𝐴) = 𝐴) | |
36 | 19, 35 | syl 17 | . . . 4 ⊢ ((𝐴 ∼ 𝑋 ∧ 𝐵 ∼ 𝑌) → (∅ ++ 𝐴) = 𝐴) |
37 | 36 | oveq1d 6806 | . . 3 ⊢ ((𝐴 ∼ 𝑋 ∧ 𝐵 ∼ 𝑌) → ((∅ ++ 𝐴) ++ 𝑌) = (𝐴 ++ 𝑌)) |
38 | 4, 5 | ercl2 7907 | . . . . . 6 ⊢ ((𝐴 ∼ 𝑋 ∧ 𝐵 ∼ 𝑌) → 𝑋 ∈ 𝑊) |
39 | 38, 10 | eleqtrd 2850 | . . . . 5 ⊢ ((𝐴 ∼ 𝑋 ∧ 𝐵 ∼ 𝑌) → 𝑋 ∈ Word (𝐼 × 2𝑜)) |
40 | ccatlid 13571 | . . . . 5 ⊢ (𝑋 ∈ Word (𝐼 × 2𝑜) → (∅ ++ 𝑋) = 𝑋) | |
41 | 39, 40 | syl 17 | . . . 4 ⊢ ((𝐴 ∼ 𝑋 ∧ 𝐵 ∼ 𝑌) → (∅ ++ 𝑋) = 𝑋) |
42 | 41 | oveq1d 6806 | . . 3 ⊢ ((𝐴 ∼ 𝑋 ∧ 𝐵 ∼ 𝑌) → ((∅ ++ 𝑋) ++ 𝑌) = (𝑋 ++ 𝑌)) |
43 | 34, 37, 42 | 3brtr3d 4814 | . 2 ⊢ ((𝐴 ∼ 𝑋 ∧ 𝐵 ∼ 𝑌) → (𝐴 ++ 𝑌) ∼ (𝑋 ++ 𝑌)) |
44 | 4, 32, 43 | ertrd 7910 | 1 ⊢ ((𝐴 ∼ 𝑋 ∧ 𝐵 ∼ 𝑌) → (𝐴 ++ 𝐵) ∼ (𝑋 ++ 𝑌)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 = wceq 1629 ∈ wcel 2143 ∀wral 3059 {crab 3063 Vcvv 3348 ∖ cdif 3717 ∅c0 4060 {csn 4313 〈cop 4319 〈cotp 4321 ∪ ciun 4651 class class class wbr 4783 ↦ cmpt 4860 I cid 5155 × cxp 5246 ran crn 5249 ‘cfv 6030 (class class class)co 6791 ↦ cmpt2 6793 1𝑜c1o 7704 2𝑜c2o 7705 Er wer 7891 0cc0 10136 1c1 10137 − cmin 10466 ...cfz 12532 ..^cfzo 12672 ♯chash 13324 Word cword 13490 ++ cconcat 13492 splice csplice 13495 〈“cs2 13798 ~FG cefg 18332 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1868 ax-4 1883 ax-5 1989 ax-6 2055 ax-7 2091 ax-8 2145 ax-9 2152 ax-10 2172 ax-11 2188 ax-12 2201 ax-13 2406 ax-ext 2749 ax-rep 4901 ax-sep 4911 ax-nul 4919 ax-pow 4970 ax-pr 5033 ax-un 7094 ax-cnex 10192 ax-resscn 10193 ax-1cn 10194 ax-icn 10195 ax-addcl 10196 ax-addrcl 10197 ax-mulcl 10198 ax-mulrcl 10199 ax-mulcom 10200 ax-addass 10201 ax-mulass 10202 ax-distr 10203 ax-i2m1 10204 ax-1ne0 10205 ax-1rid 10206 ax-rnegex 10207 ax-rrecex 10208 ax-cnre 10209 ax-pre-lttri 10210 ax-pre-lttrn 10211 ax-pre-ltadd 10212 ax-pre-mulgt0 10213 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1070 df-3an 1071 df-tru 1632 df-ex 1851 df-nf 1856 df-sb 2048 df-eu 2620 df-mo 2621 df-clab 2756 df-cleq 2762 df-clel 2765 df-nfc 2900 df-ne 2942 df-nel 3045 df-ral 3064 df-rex 3065 df-reu 3066 df-rab 3068 df-v 3350 df-sbc 3585 df-csb 3680 df-dif 3723 df-un 3725 df-in 3727 df-ss 3734 df-pss 3736 df-nul 4061 df-if 4223 df-pw 4296 df-sn 4314 df-pr 4316 df-tp 4318 df-op 4320 df-ot 4322 df-uni 4572 df-int 4609 df-iun 4653 df-iin 4654 df-br 4784 df-opab 4844 df-mpt 4861 df-tr 4884 df-id 5156 df-eprel 5161 df-po 5169 df-so 5170 df-fr 5207 df-we 5209 df-xp 5254 df-rel 5255 df-cnv 5256 df-co 5257 df-dm 5258 df-rn 5259 df-res 5260 df-ima 5261 df-pred 5822 df-ord 5868 df-on 5869 df-lim 5870 df-suc 5871 df-iota 5993 df-fun 6032 df-fn 6033 df-f 6034 df-f1 6035 df-fo 6036 df-f1o 6037 df-fv 6038 df-riota 6752 df-ov 6794 df-oprab 6795 df-mpt2 6796 df-om 7211 df-1st 7313 df-2nd 7314 df-wrecs 7557 df-recs 7619 df-rdg 7657 df-1o 7711 df-2o 7712 df-oadd 7715 df-er 7894 df-ec 7896 df-map 8009 df-pm 8010 df-en 8108 df-dom 8109 df-sdom 8110 df-fin 8111 df-card 8963 df-pnf 10276 df-mnf 10277 df-xr 10278 df-ltxr 10279 df-le 10280 df-sub 10468 df-neg 10469 df-nn 11221 df-n0 11493 df-z 11578 df-uz 11888 df-fz 12533 df-fzo 12673 df-hash 13325 df-word 13498 df-concat 13500 df-s1 13501 df-substr 13502 df-splice 13503 df-s2 13805 df-efg 18335 |
This theorem is referenced by: frgpcpbl 18385 |
Copyright terms: Public domain | W3C validator |