MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  efcllem Structured version   Visualization version   GIF version

Theorem efcllem 14978
Description: Lemma for efcl 14983. The series that defines the exponential function converges, in the case where its argument is nonzero. The ratio test cvgrat 14785 is used to show convergence. (Contributed by NM, 26-Apr-2005.) (Proof shortened by Mario Carneiro, 28-Apr-2014.)
Hypothesis
Ref Expression
eftval.1 𝐹 = (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛)))
Assertion
Ref Expression
efcllem (𝐴 ∈ ℂ → seq0( + , 𝐹) ∈ dom ⇝ )
Distinct variable group:   𝐴,𝑛
Allowed substitution hint:   𝐹(𝑛)

Proof of Theorem efcllem
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 nn0uz 11886 . 2 0 = (ℤ‘0)
2 eqid 2748 . 2 (ℤ‘(⌊‘(2 · (abs‘𝐴)))) = (ℤ‘(⌊‘(2 · (abs‘𝐴))))
3 halfre 11409 . . 3 (1 / 2) ∈ ℝ
43a1i 11 . 2 (𝐴 ∈ ℂ → (1 / 2) ∈ ℝ)
5 halflt1 11413 . . 3 (1 / 2) < 1
65a1i 11 . 2 (𝐴 ∈ ℂ → (1 / 2) < 1)
7 2re 11253 . . . 4 2 ∈ ℝ
8 abscl 14188 . . . 4 (𝐴 ∈ ℂ → (abs‘𝐴) ∈ ℝ)
9 remulcl 10184 . . . 4 ((2 ∈ ℝ ∧ (abs‘𝐴) ∈ ℝ) → (2 · (abs‘𝐴)) ∈ ℝ)
107, 8, 9sylancr 698 . . 3 (𝐴 ∈ ℂ → (2 · (abs‘𝐴)) ∈ ℝ)
11 absge0 14197 . . . 4 (𝐴 ∈ ℂ → 0 ≤ (abs‘𝐴))
12 0le2 11274 . . . . 5 0 ≤ 2
13 mulge0 10709 . . . . 5 (((2 ∈ ℝ ∧ 0 ≤ 2) ∧ ((abs‘𝐴) ∈ ℝ ∧ 0 ≤ (abs‘𝐴))) → 0 ≤ (2 · (abs‘𝐴)))
147, 12, 13mpanl12 720 . . . 4 (((abs‘𝐴) ∈ ℝ ∧ 0 ≤ (abs‘𝐴)) → 0 ≤ (2 · (abs‘𝐴)))
158, 11, 14syl2anc 696 . . 3 (𝐴 ∈ ℂ → 0 ≤ (2 · (abs‘𝐴)))
16 flge0nn0 12786 . . 3 (((2 · (abs‘𝐴)) ∈ ℝ ∧ 0 ≤ (2 · (abs‘𝐴))) → (⌊‘(2 · (abs‘𝐴))) ∈ ℕ0)
1710, 15, 16syl2anc 696 . 2 (𝐴 ∈ ℂ → (⌊‘(2 · (abs‘𝐴))) ∈ ℕ0)
18 eftval.1 . . . . 5 𝐹 = (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛)))
1918eftval 14977 . . . 4 (𝑘 ∈ ℕ0 → (𝐹𝑘) = ((𝐴𝑘) / (!‘𝑘)))
2019adantl 473 . . 3 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (𝐹𝑘) = ((𝐴𝑘) / (!‘𝑘)))
21 eftcl 14974 . . 3 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → ((𝐴𝑘) / (!‘𝑘)) ∈ ℂ)
2220, 21eqeltrd 2827 . 2 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (𝐹𝑘) ∈ ℂ)
238adantr 472 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ (ℤ‘(⌊‘(2 · (abs‘𝐴))))) → (abs‘𝐴) ∈ ℝ)
24 eluznn0 11921 . . . . . . 7 (((⌊‘(2 · (abs‘𝐴))) ∈ ℕ0𝑘 ∈ (ℤ‘(⌊‘(2 · (abs‘𝐴))))) → 𝑘 ∈ ℕ0)
2517, 24sylan 489 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ (ℤ‘(⌊‘(2 · (abs‘𝐴))))) → 𝑘 ∈ ℕ0)
26 nn0p1nn 11495 . . . . . 6 (𝑘 ∈ ℕ0 → (𝑘 + 1) ∈ ℕ)
2725, 26syl 17 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ (ℤ‘(⌊‘(2 · (abs‘𝐴))))) → (𝑘 + 1) ∈ ℕ)
2823, 27nndivred 11232 . . . 4 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ (ℤ‘(⌊‘(2 · (abs‘𝐴))))) → ((abs‘𝐴) / (𝑘 + 1)) ∈ ℝ)
293a1i 11 . . . 4 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ (ℤ‘(⌊‘(2 · (abs‘𝐴))))) → (1 / 2) ∈ ℝ)
3023, 25reexpcld 13190 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ (ℤ‘(⌊‘(2 · (abs‘𝐴))))) → ((abs‘𝐴)↑𝑘) ∈ ℝ)
31 faccl 13235 . . . . . 6 (𝑘 ∈ ℕ0 → (!‘𝑘) ∈ ℕ)
3225, 31syl 17 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ (ℤ‘(⌊‘(2 · (abs‘𝐴))))) → (!‘𝑘) ∈ ℕ)
3330, 32nndivred 11232 . . . 4 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ (ℤ‘(⌊‘(2 · (abs‘𝐴))))) → (((abs‘𝐴)↑𝑘) / (!‘𝑘)) ∈ ℝ)
34 expcl 13043 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (𝐴𝑘) ∈ ℂ)
3525, 34syldan 488 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ (ℤ‘(⌊‘(2 · (abs‘𝐴))))) → (𝐴𝑘) ∈ ℂ)
3635absge0d 14353 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ (ℤ‘(⌊‘(2 · (abs‘𝐴))))) → 0 ≤ (abs‘(𝐴𝑘)))
37 absexp 14214 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (abs‘(𝐴𝑘)) = ((abs‘𝐴)↑𝑘))
3825, 37syldan 488 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ (ℤ‘(⌊‘(2 · (abs‘𝐴))))) → (abs‘(𝐴𝑘)) = ((abs‘𝐴)↑𝑘))
3936, 38breqtrd 4818 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ (ℤ‘(⌊‘(2 · (abs‘𝐴))))) → 0 ≤ ((abs‘𝐴)↑𝑘))
4032nnred 11198 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ (ℤ‘(⌊‘(2 · (abs‘𝐴))))) → (!‘𝑘) ∈ ℝ)
4132nngt0d 11227 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ (ℤ‘(⌊‘(2 · (abs‘𝐴))))) → 0 < (!‘𝑘))
42 divge0 11055 . . . . 5 (((((abs‘𝐴)↑𝑘) ∈ ℝ ∧ 0 ≤ ((abs‘𝐴)↑𝑘)) ∧ ((!‘𝑘) ∈ ℝ ∧ 0 < (!‘𝑘))) → 0 ≤ (((abs‘𝐴)↑𝑘) / (!‘𝑘)))
4330, 39, 40, 41, 42syl22anc 1464 . . . 4 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ (ℤ‘(⌊‘(2 · (abs‘𝐴))))) → 0 ≤ (((abs‘𝐴)↑𝑘) / (!‘𝑘)))
4410adantr 472 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ (ℤ‘(⌊‘(2 · (abs‘𝐴))))) → (2 · (abs‘𝐴)) ∈ ℝ)
45 peano2nn0 11496 . . . . . . . . . . 11 ((⌊‘(2 · (abs‘𝐴))) ∈ ℕ0 → ((⌊‘(2 · (abs‘𝐴))) + 1) ∈ ℕ0)
4617, 45syl 17 . . . . . . . . . 10 (𝐴 ∈ ℂ → ((⌊‘(2 · (abs‘𝐴))) + 1) ∈ ℕ0)
4746nn0red 11515 . . . . . . . . 9 (𝐴 ∈ ℂ → ((⌊‘(2 · (abs‘𝐴))) + 1) ∈ ℝ)
4847adantr 472 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ (ℤ‘(⌊‘(2 · (abs‘𝐴))))) → ((⌊‘(2 · (abs‘𝐴))) + 1) ∈ ℝ)
4927nnred 11198 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ (ℤ‘(⌊‘(2 · (abs‘𝐴))))) → (𝑘 + 1) ∈ ℝ)
50 flltp1 12766 . . . . . . . . 9 ((2 · (abs‘𝐴)) ∈ ℝ → (2 · (abs‘𝐴)) < ((⌊‘(2 · (abs‘𝐴))) + 1))
5144, 50syl 17 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ (ℤ‘(⌊‘(2 · (abs‘𝐴))))) → (2 · (abs‘𝐴)) < ((⌊‘(2 · (abs‘𝐴))) + 1))
52 eluzp1p1 11876 . . . . . . . . . 10 (𝑘 ∈ (ℤ‘(⌊‘(2 · (abs‘𝐴)))) → (𝑘 + 1) ∈ (ℤ‘((⌊‘(2 · (abs‘𝐴))) + 1)))
5352adantl 473 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ (ℤ‘(⌊‘(2 · (abs‘𝐴))))) → (𝑘 + 1) ∈ (ℤ‘((⌊‘(2 · (abs‘𝐴))) + 1)))
54 eluzle 11863 . . . . . . . . 9 ((𝑘 + 1) ∈ (ℤ‘((⌊‘(2 · (abs‘𝐴))) + 1)) → ((⌊‘(2 · (abs‘𝐴))) + 1) ≤ (𝑘 + 1))
5553, 54syl 17 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ (ℤ‘(⌊‘(2 · (abs‘𝐴))))) → ((⌊‘(2 · (abs‘𝐴))) + 1) ≤ (𝑘 + 1))
5644, 48, 49, 51, 55ltletrd 10360 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ (ℤ‘(⌊‘(2 · (abs‘𝐴))))) → (2 · (abs‘𝐴)) < (𝑘 + 1))
5723recnd 10231 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ (ℤ‘(⌊‘(2 · (abs‘𝐴))))) → (abs‘𝐴) ∈ ℂ)
58 2cn 11254 . . . . . . . 8 2 ∈ ℂ
59 mulcom 10185 . . . . . . . 8 (((abs‘𝐴) ∈ ℂ ∧ 2 ∈ ℂ) → ((abs‘𝐴) · 2) = (2 · (abs‘𝐴)))
6057, 58, 59sylancl 697 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ (ℤ‘(⌊‘(2 · (abs‘𝐴))))) → ((abs‘𝐴) · 2) = (2 · (abs‘𝐴)))
6127nncnd 11199 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ (ℤ‘(⌊‘(2 · (abs‘𝐴))))) → (𝑘 + 1) ∈ ℂ)
6261mulid2d 10221 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ (ℤ‘(⌊‘(2 · (abs‘𝐴))))) → (1 · (𝑘 + 1)) = (𝑘 + 1))
6356, 60, 623brtr4d 4824 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ (ℤ‘(⌊‘(2 · (abs‘𝐴))))) → ((abs‘𝐴) · 2) < (1 · (𝑘 + 1)))
64 2pos 11275 . . . . . . . . 9 0 < 2
657, 64pm3.2i 470 . . . . . . . 8 (2 ∈ ℝ ∧ 0 < 2)
6665a1i 11 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ (ℤ‘(⌊‘(2 · (abs‘𝐴))))) → (2 ∈ ℝ ∧ 0 < 2))
67 1red 10218 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ (ℤ‘(⌊‘(2 · (abs‘𝐴))))) → 1 ∈ ℝ)
6827nngt0d 11227 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ (ℤ‘(⌊‘(2 · (abs‘𝐴))))) → 0 < (𝑘 + 1))
6949, 68jca 555 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ (ℤ‘(⌊‘(2 · (abs‘𝐴))))) → ((𝑘 + 1) ∈ ℝ ∧ 0 < (𝑘 + 1)))
70 lt2mul2div 11064 . . . . . . 7 ((((abs‘𝐴) ∈ ℝ ∧ (2 ∈ ℝ ∧ 0 < 2)) ∧ (1 ∈ ℝ ∧ ((𝑘 + 1) ∈ ℝ ∧ 0 < (𝑘 + 1)))) → (((abs‘𝐴) · 2) < (1 · (𝑘 + 1)) ↔ ((abs‘𝐴) / (𝑘 + 1)) < (1 / 2)))
7123, 66, 67, 69, 70syl22anc 1464 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ (ℤ‘(⌊‘(2 · (abs‘𝐴))))) → (((abs‘𝐴) · 2) < (1 · (𝑘 + 1)) ↔ ((abs‘𝐴) / (𝑘 + 1)) < (1 / 2)))
7263, 71mpbid 222 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ (ℤ‘(⌊‘(2 · (abs‘𝐴))))) → ((abs‘𝐴) / (𝑘 + 1)) < (1 / 2))
73 ltle 10289 . . . . . 6 ((((abs‘𝐴) / (𝑘 + 1)) ∈ ℝ ∧ (1 / 2) ∈ ℝ) → (((abs‘𝐴) / (𝑘 + 1)) < (1 / 2) → ((abs‘𝐴) / (𝑘 + 1)) ≤ (1 / 2)))
7428, 3, 73sylancl 697 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ (ℤ‘(⌊‘(2 · (abs‘𝐴))))) → (((abs‘𝐴) / (𝑘 + 1)) < (1 / 2) → ((abs‘𝐴) / (𝑘 + 1)) ≤ (1 / 2)))
7572, 74mpd 15 . . . 4 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ (ℤ‘(⌊‘(2 · (abs‘𝐴))))) → ((abs‘𝐴) / (𝑘 + 1)) ≤ (1 / 2))
7628, 29, 33, 43, 75lemul2ad 11127 . . 3 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ (ℤ‘(⌊‘(2 · (abs‘𝐴))))) → ((((abs‘𝐴)↑𝑘) / (!‘𝑘)) · ((abs‘𝐴) / (𝑘 + 1))) ≤ ((((abs‘𝐴)↑𝑘) / (!‘𝑘)) · (1 / 2)))
77 peano2nn0 11496 . . . . . . 7 (𝑘 ∈ ℕ0 → (𝑘 + 1) ∈ ℕ0)
7825, 77syl 17 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ (ℤ‘(⌊‘(2 · (abs‘𝐴))))) → (𝑘 + 1) ∈ ℕ0)
7918eftval 14977 . . . . . 6 ((𝑘 + 1) ∈ ℕ0 → (𝐹‘(𝑘 + 1)) = ((𝐴↑(𝑘 + 1)) / (!‘(𝑘 + 1))))
8078, 79syl 17 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ (ℤ‘(⌊‘(2 · (abs‘𝐴))))) → (𝐹‘(𝑘 + 1)) = ((𝐴↑(𝑘 + 1)) / (!‘(𝑘 + 1))))
8180fveq2d 6344 . . . 4 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ (ℤ‘(⌊‘(2 · (abs‘𝐴))))) → (abs‘(𝐹‘(𝑘 + 1))) = (abs‘((𝐴↑(𝑘 + 1)) / (!‘(𝑘 + 1)))))
82 absexp 14214 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ (𝑘 + 1) ∈ ℕ0) → (abs‘(𝐴↑(𝑘 + 1))) = ((abs‘𝐴)↑(𝑘 + 1)))
8378, 82syldan 488 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ (ℤ‘(⌊‘(2 · (abs‘𝐴))))) → (abs‘(𝐴↑(𝑘 + 1))) = ((abs‘𝐴)↑(𝑘 + 1)))
8457, 25expp1d 13174 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ (ℤ‘(⌊‘(2 · (abs‘𝐴))))) → ((abs‘𝐴)↑(𝑘 + 1)) = (((abs‘𝐴)↑𝑘) · (abs‘𝐴)))
8583, 84eqtrd 2782 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ (ℤ‘(⌊‘(2 · (abs‘𝐴))))) → (abs‘(𝐴↑(𝑘 + 1))) = (((abs‘𝐴)↑𝑘) · (abs‘𝐴)))
86 faccl 13235 . . . . . . . . . 10 ((𝑘 + 1) ∈ ℕ0 → (!‘(𝑘 + 1)) ∈ ℕ)
8778, 86syl 17 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ (ℤ‘(⌊‘(2 · (abs‘𝐴))))) → (!‘(𝑘 + 1)) ∈ ℕ)
8887nnred 11198 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ (ℤ‘(⌊‘(2 · (abs‘𝐴))))) → (!‘(𝑘 + 1)) ∈ ℝ)
8987nnnn0d 11514 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ (ℤ‘(⌊‘(2 · (abs‘𝐴))))) → (!‘(𝑘 + 1)) ∈ ℕ0)
9089nn0ge0d 11517 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ (ℤ‘(⌊‘(2 · (abs‘𝐴))))) → 0 ≤ (!‘(𝑘 + 1)))
9188, 90absidd 14331 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ (ℤ‘(⌊‘(2 · (abs‘𝐴))))) → (abs‘(!‘(𝑘 + 1))) = (!‘(𝑘 + 1)))
92 facp1 13230 . . . . . . . 8 (𝑘 ∈ ℕ0 → (!‘(𝑘 + 1)) = ((!‘𝑘) · (𝑘 + 1)))
9325, 92syl 17 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ (ℤ‘(⌊‘(2 · (abs‘𝐴))))) → (!‘(𝑘 + 1)) = ((!‘𝑘) · (𝑘 + 1)))
9491, 93eqtrd 2782 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ (ℤ‘(⌊‘(2 · (abs‘𝐴))))) → (abs‘(!‘(𝑘 + 1))) = ((!‘𝑘) · (𝑘 + 1)))
9585, 94oveq12d 6819 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ (ℤ‘(⌊‘(2 · (abs‘𝐴))))) → ((abs‘(𝐴↑(𝑘 + 1))) / (abs‘(!‘(𝑘 + 1)))) = ((((abs‘𝐴)↑𝑘) · (abs‘𝐴)) / ((!‘𝑘) · (𝑘 + 1))))
96 expcl 13043 . . . . . . 7 ((𝐴 ∈ ℂ ∧ (𝑘 + 1) ∈ ℕ0) → (𝐴↑(𝑘 + 1)) ∈ ℂ)
9778, 96syldan 488 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ (ℤ‘(⌊‘(2 · (abs‘𝐴))))) → (𝐴↑(𝑘 + 1)) ∈ ℂ)
9887nncnd 11199 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ (ℤ‘(⌊‘(2 · (abs‘𝐴))))) → (!‘(𝑘 + 1)) ∈ ℂ)
9987nnne0d 11228 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ (ℤ‘(⌊‘(2 · (abs‘𝐴))))) → (!‘(𝑘 + 1)) ≠ 0)
10097, 98, 99absdivd 14364 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ (ℤ‘(⌊‘(2 · (abs‘𝐴))))) → (abs‘((𝐴↑(𝑘 + 1)) / (!‘(𝑘 + 1)))) = ((abs‘(𝐴↑(𝑘 + 1))) / (abs‘(!‘(𝑘 + 1)))))
10130recnd 10231 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ (ℤ‘(⌊‘(2 · (abs‘𝐴))))) → ((abs‘𝐴)↑𝑘) ∈ ℂ)
10232nncnd 11199 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ (ℤ‘(⌊‘(2 · (abs‘𝐴))))) → (!‘𝑘) ∈ ℂ)
10332nnne0d 11228 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ (ℤ‘(⌊‘(2 · (abs‘𝐴))))) → (!‘𝑘) ≠ 0)
10427nnne0d 11228 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ (ℤ‘(⌊‘(2 · (abs‘𝐴))))) → (𝑘 + 1) ≠ 0)
105101, 102, 57, 61, 103, 104divmuldivd 11005 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ (ℤ‘(⌊‘(2 · (abs‘𝐴))))) → ((((abs‘𝐴)↑𝑘) / (!‘𝑘)) · ((abs‘𝐴) / (𝑘 + 1))) = ((((abs‘𝐴)↑𝑘) · (abs‘𝐴)) / ((!‘𝑘) · (𝑘 + 1))))
10695, 100, 1053eqtr4d 2792 . . . 4 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ (ℤ‘(⌊‘(2 · (abs‘𝐴))))) → (abs‘((𝐴↑(𝑘 + 1)) / (!‘(𝑘 + 1)))) = ((((abs‘𝐴)↑𝑘) / (!‘𝑘)) · ((abs‘𝐴) / (𝑘 + 1))))
10781, 106eqtrd 2782 . . 3 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ (ℤ‘(⌊‘(2 · (abs‘𝐴))))) → (abs‘(𝐹‘(𝑘 + 1))) = ((((abs‘𝐴)↑𝑘) / (!‘𝑘)) · ((abs‘𝐴) / (𝑘 + 1))))
108 halfcn 11410 . . . . 5 (1 / 2) ∈ ℂ
10925, 22syldan 488 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ (ℤ‘(⌊‘(2 · (abs‘𝐴))))) → (𝐹𝑘) ∈ ℂ)
110109abscld 14345 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ (ℤ‘(⌊‘(2 · (abs‘𝐴))))) → (abs‘(𝐹𝑘)) ∈ ℝ)
111110recnd 10231 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ (ℤ‘(⌊‘(2 · (abs‘𝐴))))) → (abs‘(𝐹𝑘)) ∈ ℂ)
112 mulcom 10185 . . . . 5 (((1 / 2) ∈ ℂ ∧ (abs‘(𝐹𝑘)) ∈ ℂ) → ((1 / 2) · (abs‘(𝐹𝑘))) = ((abs‘(𝐹𝑘)) · (1 / 2)))
113108, 111, 112sylancr 698 . . . 4 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ (ℤ‘(⌊‘(2 · (abs‘𝐴))))) → ((1 / 2) · (abs‘(𝐹𝑘))) = ((abs‘(𝐹𝑘)) · (1 / 2)))
11425, 19syl 17 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ (ℤ‘(⌊‘(2 · (abs‘𝐴))))) → (𝐹𝑘) = ((𝐴𝑘) / (!‘𝑘)))
115114fveq2d 6344 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ (ℤ‘(⌊‘(2 · (abs‘𝐴))))) → (abs‘(𝐹𝑘)) = (abs‘((𝐴𝑘) / (!‘𝑘))))
116 eftabs 14976 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (abs‘((𝐴𝑘) / (!‘𝑘))) = (((abs‘𝐴)↑𝑘) / (!‘𝑘)))
11725, 116syldan 488 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ (ℤ‘(⌊‘(2 · (abs‘𝐴))))) → (abs‘((𝐴𝑘) / (!‘𝑘))) = (((abs‘𝐴)↑𝑘) / (!‘𝑘)))
118115, 117eqtrd 2782 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ (ℤ‘(⌊‘(2 · (abs‘𝐴))))) → (abs‘(𝐹𝑘)) = (((abs‘𝐴)↑𝑘) / (!‘𝑘)))
119118oveq1d 6816 . . . 4 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ (ℤ‘(⌊‘(2 · (abs‘𝐴))))) → ((abs‘(𝐹𝑘)) · (1 / 2)) = ((((abs‘𝐴)↑𝑘) / (!‘𝑘)) · (1 / 2)))
120113, 119eqtrd 2782 . . 3 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ (ℤ‘(⌊‘(2 · (abs‘𝐴))))) → ((1 / 2) · (abs‘(𝐹𝑘))) = ((((abs‘𝐴)↑𝑘) / (!‘𝑘)) · (1 / 2)))
12176, 107, 1203brtr4d 4824 . 2 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ (ℤ‘(⌊‘(2 · (abs‘𝐴))))) → (abs‘(𝐹‘(𝑘 + 1))) ≤ ((1 / 2) · (abs‘(𝐹𝑘))))
1221, 2, 4, 6, 17, 22, 121cvgrat 14785 1 (𝐴 ∈ ℂ → seq0( + , 𝐹) ∈ dom ⇝ )
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383   = wceq 1620  wcel 2127   class class class wbr 4792  cmpt 4869  dom cdm 5254  cfv 6037  (class class class)co 6801  cc 10097  cr 10098  0cc0 10099  1c1 10100   + caddc 10102   · cmul 10104   < clt 10237  cle 10238   / cdiv 10847  cn 11183  2c2 11233  0cn0 11455  cuz 11850  cfl 12756  seqcseq 12966  cexp 13025  !cfa 13225  abscabs 14144  cli 14385
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1859  ax-4 1874  ax-5 1976  ax-6 2042  ax-7 2078  ax-8 2129  ax-9 2136  ax-10 2156  ax-11 2171  ax-12 2184  ax-13 2379  ax-ext 2728  ax-rep 4911  ax-sep 4921  ax-nul 4929  ax-pow 4980  ax-pr 5043  ax-un 7102  ax-inf2 8699  ax-cnex 10155  ax-resscn 10156  ax-1cn 10157  ax-icn 10158  ax-addcl 10159  ax-addrcl 10160  ax-mulcl 10161  ax-mulrcl 10162  ax-mulcom 10163  ax-addass 10164  ax-mulass 10165  ax-distr 10166  ax-i2m1 10167  ax-1ne0 10168  ax-1rid 10169  ax-rnegex 10170  ax-rrecex 10171  ax-cnre 10172  ax-pre-lttri 10173  ax-pre-lttrn 10174  ax-pre-ltadd 10175  ax-pre-mulgt0 10176  ax-pre-sup 10177  ax-addf 10178  ax-mulf 10179
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1623  df-fal 1626  df-ex 1842  df-nf 1847  df-sb 2035  df-eu 2599  df-mo 2600  df-clab 2735  df-cleq 2741  df-clel 2744  df-nfc 2879  df-ne 2921  df-nel 3024  df-ral 3043  df-rex 3044  df-reu 3045  df-rmo 3046  df-rab 3047  df-v 3330  df-sbc 3565  df-csb 3663  df-dif 3706  df-un 3708  df-in 3710  df-ss 3717  df-pss 3719  df-nul 4047  df-if 4219  df-pw 4292  df-sn 4310  df-pr 4312  df-tp 4314  df-op 4316  df-uni 4577  df-int 4616  df-iun 4662  df-br 4793  df-opab 4853  df-mpt 4870  df-tr 4893  df-id 5162  df-eprel 5167  df-po 5175  df-so 5176  df-fr 5213  df-se 5214  df-we 5215  df-xp 5260  df-rel 5261  df-cnv 5262  df-co 5263  df-dm 5264  df-rn 5265  df-res 5266  df-ima 5267  df-pred 5829  df-ord 5875  df-on 5876  df-lim 5877  df-suc 5878  df-iota 6000  df-fun 6039  df-fn 6040  df-f 6041  df-f1 6042  df-fo 6043  df-f1o 6044  df-fv 6045  df-isom 6046  df-riota 6762  df-ov 6804  df-oprab 6805  df-mpt2 6806  df-om 7219  df-1st 7321  df-2nd 7322  df-wrecs 7564  df-recs 7625  df-rdg 7663  df-1o 7717  df-oadd 7721  df-er 7899  df-pm 8014  df-en 8110  df-dom 8111  df-sdom 8112  df-fin 8113  df-sup 8501  df-inf 8502  df-oi 8568  df-card 8926  df-pnf 10239  df-mnf 10240  df-xr 10241  df-ltxr 10242  df-le 10243  df-sub 10431  df-neg 10432  df-div 10848  df-nn 11184  df-2 11242  df-3 11243  df-n0 11456  df-z 11541  df-uz 11851  df-rp 11997  df-ico 12345  df-fz 12491  df-fzo 12631  df-fl 12758  df-seq 12967  df-exp 13026  df-fac 13226  df-hash 13283  df-shft 13977  df-cj 14009  df-re 14010  df-im 14011  df-sqrt 14145  df-abs 14146  df-limsup 14372  df-clim 14389  df-rlim 14390  df-sum 14587
This theorem is referenced by:  eff  14982  efcvg  14985  reefcl  14987  efaddlem  14993  eftlcvg  15006  effsumlt  15011  eflegeo  15021  eirrlem  15102  expfac  40361
  Copyright terms: Public domain W3C validator