MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  efaddlem Structured version   Visualization version   GIF version

Theorem efaddlem 15022
Description: Lemma for efadd 15023 (exponential function addition law). (Contributed by Mario Carneiro, 29-Apr-2014.)
Hypotheses
Ref Expression
efadd.1 𝐹 = (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛)))
efadd.2 𝐺 = (𝑛 ∈ ℕ0 ↦ ((𝐵𝑛) / (!‘𝑛)))
efadd.3 𝐻 = (𝑛 ∈ ℕ0 ↦ (((𝐴 + 𝐵)↑𝑛) / (!‘𝑛)))
efadd.4 (𝜑𝐴 ∈ ℂ)
efadd.5 (𝜑𝐵 ∈ ℂ)
Assertion
Ref Expression
efaddlem (𝜑 → (exp‘(𝐴 + 𝐵)) = ((exp‘𝐴) · (exp‘𝐵)))
Distinct variable groups:   𝐴,𝑛   𝐵,𝑛
Allowed substitution hints:   𝜑(𝑛)   𝐹(𝑛)   𝐺(𝑛)   𝐻(𝑛)

Proof of Theorem efaddlem
Dummy variables 𝑗 𝑘 𝑚 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 efadd.4 . . . 4 (𝜑𝐴 ∈ ℂ)
2 efadd.5 . . . 4 (𝜑𝐵 ∈ ℂ)
31, 2addcld 10251 . . 3 (𝜑 → (𝐴 + 𝐵) ∈ ℂ)
4 efadd.3 . . . 4 𝐻 = (𝑛 ∈ ℕ0 ↦ (((𝐴 + 𝐵)↑𝑛) / (!‘𝑛)))
54efcvg 15014 . . 3 ((𝐴 + 𝐵) ∈ ℂ → seq0( + , 𝐻) ⇝ (exp‘(𝐴 + 𝐵)))
63, 5syl 17 . 2 (𝜑 → seq0( + , 𝐻) ⇝ (exp‘(𝐴 + 𝐵)))
7 efadd.1 . . . . . 6 𝐹 = (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛)))
87eftval 15006 . . . . 5 (𝑗 ∈ ℕ0 → (𝐹𝑗) = ((𝐴𝑗) / (!‘𝑗)))
98adantl 473 . . . 4 ((𝜑𝑗 ∈ ℕ0) → (𝐹𝑗) = ((𝐴𝑗) / (!‘𝑗)))
10 absexp 14243 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ0) → (abs‘(𝐴𝑗)) = ((abs‘𝐴)↑𝑗))
111, 10sylan 489 . . . . . 6 ((𝜑𝑗 ∈ ℕ0) → (abs‘(𝐴𝑗)) = ((abs‘𝐴)↑𝑗))
12 faccl 13264 . . . . . . . 8 (𝑗 ∈ ℕ0 → (!‘𝑗) ∈ ℕ)
1312adantl 473 . . . . . . 7 ((𝜑𝑗 ∈ ℕ0) → (!‘𝑗) ∈ ℕ)
14 nnre 11219 . . . . . . . 8 ((!‘𝑗) ∈ ℕ → (!‘𝑗) ∈ ℝ)
15 nnnn0 11491 . . . . . . . . 9 ((!‘𝑗) ∈ ℕ → (!‘𝑗) ∈ ℕ0)
1615nn0ge0d 11546 . . . . . . . 8 ((!‘𝑗) ∈ ℕ → 0 ≤ (!‘𝑗))
1714, 16absidd 14360 . . . . . . 7 ((!‘𝑗) ∈ ℕ → (abs‘(!‘𝑗)) = (!‘𝑗))
1813, 17syl 17 . . . . . 6 ((𝜑𝑗 ∈ ℕ0) → (abs‘(!‘𝑗)) = (!‘𝑗))
1911, 18oveq12d 6831 . . . . 5 ((𝜑𝑗 ∈ ℕ0) → ((abs‘(𝐴𝑗)) / (abs‘(!‘𝑗))) = (((abs‘𝐴)↑𝑗) / (!‘𝑗)))
20 expcl 13072 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ0) → (𝐴𝑗) ∈ ℂ)
211, 20sylan 489 . . . . . 6 ((𝜑𝑗 ∈ ℕ0) → (𝐴𝑗) ∈ ℂ)
2213nncnd 11228 . . . . . 6 ((𝜑𝑗 ∈ ℕ0) → (!‘𝑗) ∈ ℂ)
2313nnne0d 11257 . . . . . 6 ((𝜑𝑗 ∈ ℕ0) → (!‘𝑗) ≠ 0)
2421, 22, 23absdivd 14393 . . . . 5 ((𝜑𝑗 ∈ ℕ0) → (abs‘((𝐴𝑗) / (!‘𝑗))) = ((abs‘(𝐴𝑗)) / (abs‘(!‘𝑗))))
25 eqid 2760 . . . . . . 7 (𝑛 ∈ ℕ0 ↦ (((abs‘𝐴)↑𝑛) / (!‘𝑛))) = (𝑛 ∈ ℕ0 ↦ (((abs‘𝐴)↑𝑛) / (!‘𝑛)))
2625eftval 15006 . . . . . 6 (𝑗 ∈ ℕ0 → ((𝑛 ∈ ℕ0 ↦ (((abs‘𝐴)↑𝑛) / (!‘𝑛)))‘𝑗) = (((abs‘𝐴)↑𝑗) / (!‘𝑗)))
2726adantl 473 . . . . 5 ((𝜑𝑗 ∈ ℕ0) → ((𝑛 ∈ ℕ0 ↦ (((abs‘𝐴)↑𝑛) / (!‘𝑛)))‘𝑗) = (((abs‘𝐴)↑𝑗) / (!‘𝑗)))
2819, 24, 273eqtr4rd 2805 . . . 4 ((𝜑𝑗 ∈ ℕ0) → ((𝑛 ∈ ℕ0 ↦ (((abs‘𝐴)↑𝑛) / (!‘𝑛)))‘𝑗) = (abs‘((𝐴𝑗) / (!‘𝑗))))
29 eftcl 15003 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ0) → ((𝐴𝑗) / (!‘𝑗)) ∈ ℂ)
301, 29sylan 489 . . . 4 ((𝜑𝑗 ∈ ℕ0) → ((𝐴𝑗) / (!‘𝑗)) ∈ ℂ)
31 efadd.2 . . . . . 6 𝐺 = (𝑛 ∈ ℕ0 ↦ ((𝐵𝑛) / (!‘𝑛)))
3231eftval 15006 . . . . 5 (𝑘 ∈ ℕ0 → (𝐺𝑘) = ((𝐵𝑘) / (!‘𝑘)))
3332adantl 473 . . . 4 ((𝜑𝑘 ∈ ℕ0) → (𝐺𝑘) = ((𝐵𝑘) / (!‘𝑘)))
34 eftcl 15003 . . . . 5 ((𝐵 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → ((𝐵𝑘) / (!‘𝑘)) ∈ ℂ)
352, 34sylan 489 . . . 4 ((𝜑𝑘 ∈ ℕ0) → ((𝐵𝑘) / (!‘𝑘)) ∈ ℂ)
364eftval 15006 . . . . . 6 (𝑘 ∈ ℕ0 → (𝐻𝑘) = (((𝐴 + 𝐵)↑𝑘) / (!‘𝑘)))
3736adantl 473 . . . . 5 ((𝜑𝑘 ∈ ℕ0) → (𝐻𝑘) = (((𝐴 + 𝐵)↑𝑘) / (!‘𝑘)))
381adantr 472 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ0) → 𝐴 ∈ ℂ)
392adantr 472 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ0) → 𝐵 ∈ ℂ)
40 simpr 479 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ0) → 𝑘 ∈ ℕ0)
41 binom 14761 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → ((𝐴 + 𝐵)↑𝑘) = Σ𝑗 ∈ (0...𝑘)((𝑘C𝑗) · ((𝐴↑(𝑘𝑗)) · (𝐵𝑗))))
4238, 39, 40, 41syl3anc 1477 . . . . . . 7 ((𝜑𝑘 ∈ ℕ0) → ((𝐴 + 𝐵)↑𝑘) = Σ𝑗 ∈ (0...𝑘)((𝑘C𝑗) · ((𝐴↑(𝑘𝑗)) · (𝐵𝑗))))
4342oveq1d 6828 . . . . . 6 ((𝜑𝑘 ∈ ℕ0) → (((𝐴 + 𝐵)↑𝑘) / (!‘𝑘)) = (Σ𝑗 ∈ (0...𝑘)((𝑘C𝑗) · ((𝐴↑(𝑘𝑗)) · (𝐵𝑗))) / (!‘𝑘)))
44 fzfid 12966 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ0) → (0...𝑘) ∈ Fin)
45 faccl 13264 . . . . . . . . . 10 (𝑘 ∈ ℕ0 → (!‘𝑘) ∈ ℕ)
4645adantl 473 . . . . . . . . 9 ((𝜑𝑘 ∈ ℕ0) → (!‘𝑘) ∈ ℕ)
4746nncnd 11228 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ0) → (!‘𝑘) ∈ ℂ)
48 bccl2 13304 . . . . . . . . . . 11 (𝑗 ∈ (0...𝑘) → (𝑘C𝑗) ∈ ℕ)
4948adantl 473 . . . . . . . . . 10 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑘)) → (𝑘C𝑗) ∈ ℕ)
5049nncnd 11228 . . . . . . . . 9 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑘)) → (𝑘C𝑗) ∈ ℂ)
511ad2antrr 764 . . . . . . . . . . 11 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑘)) → 𝐴 ∈ ℂ)
52 fznn0sub 12566 . . . . . . . . . . . 12 (𝑗 ∈ (0...𝑘) → (𝑘𝑗) ∈ ℕ0)
5352adantl 473 . . . . . . . . . . 11 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑘)) → (𝑘𝑗) ∈ ℕ0)
5451, 53expcld 13202 . . . . . . . . . 10 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑘)) → (𝐴↑(𝑘𝑗)) ∈ ℂ)
552ad2antrr 764 . . . . . . . . . . 11 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑘)) → 𝐵 ∈ ℂ)
56 elfznn0 12626 . . . . . . . . . . . 12 (𝑗 ∈ (0...𝑘) → 𝑗 ∈ ℕ0)
5756adantl 473 . . . . . . . . . . 11 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑘)) → 𝑗 ∈ ℕ0)
5855, 57expcld 13202 . . . . . . . . . 10 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑘)) → (𝐵𝑗) ∈ ℂ)
5954, 58mulcld 10252 . . . . . . . . 9 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑘)) → ((𝐴↑(𝑘𝑗)) · (𝐵𝑗)) ∈ ℂ)
6050, 59mulcld 10252 . . . . . . . 8 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑘)) → ((𝑘C𝑗) · ((𝐴↑(𝑘𝑗)) · (𝐵𝑗))) ∈ ℂ)
6146nnne0d 11257 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ0) → (!‘𝑘) ≠ 0)
6244, 47, 60, 61fsumdivc 14717 . . . . . . 7 ((𝜑𝑘 ∈ ℕ0) → (Σ𝑗 ∈ (0...𝑘)((𝑘C𝑗) · ((𝐴↑(𝑘𝑗)) · (𝐵𝑗))) / (!‘𝑘)) = Σ𝑗 ∈ (0...𝑘)(((𝑘C𝑗) · ((𝐴↑(𝑘𝑗)) · (𝐵𝑗))) / (!‘𝑘)))
6351, 57expcld 13202 . . . . . . . . . . 11 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑘)) → (𝐴𝑗) ∈ ℂ)
6457, 12syl 17 . . . . . . . . . . . 12 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑘)) → (!‘𝑗) ∈ ℕ)
6564nncnd 11228 . . . . . . . . . . 11 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑘)) → (!‘𝑗) ∈ ℂ)
6664nnne0d 11257 . . . . . . . . . . 11 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑘)) → (!‘𝑗) ≠ 0)
6763, 65, 66divcld 10993 . . . . . . . . . 10 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑘)) → ((𝐴𝑗) / (!‘𝑗)) ∈ ℂ)
6831eftval 15006 . . . . . . . . . . . 12 ((𝑘𝑗) ∈ ℕ0 → (𝐺‘(𝑘𝑗)) = ((𝐵↑(𝑘𝑗)) / (!‘(𝑘𝑗))))
6953, 68syl 17 . . . . . . . . . . 11 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑘)) → (𝐺‘(𝑘𝑗)) = ((𝐵↑(𝑘𝑗)) / (!‘(𝑘𝑗))))
7055, 53expcld 13202 . . . . . . . . . . . 12 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑘)) → (𝐵↑(𝑘𝑗)) ∈ ℂ)
71 faccl 13264 . . . . . . . . . . . . . 14 ((𝑘𝑗) ∈ ℕ0 → (!‘(𝑘𝑗)) ∈ ℕ)
7253, 71syl 17 . . . . . . . . . . . . 13 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑘)) → (!‘(𝑘𝑗)) ∈ ℕ)
7372nncnd 11228 . . . . . . . . . . . 12 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑘)) → (!‘(𝑘𝑗)) ∈ ℂ)
7472nnne0d 11257 . . . . . . . . . . . 12 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑘)) → (!‘(𝑘𝑗)) ≠ 0)
7570, 73, 74divcld 10993 . . . . . . . . . . 11 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑘)) → ((𝐵↑(𝑘𝑗)) / (!‘(𝑘𝑗))) ∈ ℂ)
7669, 75eqeltrd 2839 . . . . . . . . . 10 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑘)) → (𝐺‘(𝑘𝑗)) ∈ ℂ)
7767, 76mulcld 10252 . . . . . . . . 9 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑘)) → (((𝐴𝑗) / (!‘𝑗)) · (𝐺‘(𝑘𝑗))) ∈ ℂ)
78 oveq2 6821 . . . . . . . . . . 11 (𝑗 = ((0 + 𝑘) − 𝑚) → (𝐴𝑗) = (𝐴↑((0 + 𝑘) − 𝑚)))
79 fveq2 6352 . . . . . . . . . . 11 (𝑗 = ((0 + 𝑘) − 𝑚) → (!‘𝑗) = (!‘((0 + 𝑘) − 𝑚)))
8078, 79oveq12d 6831 . . . . . . . . . 10 (𝑗 = ((0 + 𝑘) − 𝑚) → ((𝐴𝑗) / (!‘𝑗)) = ((𝐴↑((0 + 𝑘) − 𝑚)) / (!‘((0 + 𝑘) − 𝑚))))
81 oveq2 6821 . . . . . . . . . . 11 (𝑗 = ((0 + 𝑘) − 𝑚) → (𝑘𝑗) = (𝑘 − ((0 + 𝑘) − 𝑚)))
8281fveq2d 6356 . . . . . . . . . 10 (𝑗 = ((0 + 𝑘) − 𝑚) → (𝐺‘(𝑘𝑗)) = (𝐺‘(𝑘 − ((0 + 𝑘) − 𝑚))))
8380, 82oveq12d 6831 . . . . . . . . 9 (𝑗 = ((0 + 𝑘) − 𝑚) → (((𝐴𝑗) / (!‘𝑗)) · (𝐺‘(𝑘𝑗))) = (((𝐴↑((0 + 𝑘) − 𝑚)) / (!‘((0 + 𝑘) − 𝑚))) · (𝐺‘(𝑘 − ((0 + 𝑘) − 𝑚)))))
8477, 83fsumrev2 14713 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ0) → Σ𝑗 ∈ (0...𝑘)(((𝐴𝑗) / (!‘𝑗)) · (𝐺‘(𝑘𝑗))) = Σ𝑚 ∈ (0...𝑘)(((𝐴↑((0 + 𝑘) − 𝑚)) / (!‘((0 + 𝑘) − 𝑚))) · (𝐺‘(𝑘 − ((0 + 𝑘) − 𝑚)))))
8531eftval 15006 . . . . . . . . . . . . . 14 (𝑗 ∈ ℕ0 → (𝐺𝑗) = ((𝐵𝑗) / (!‘𝑗)))
8657, 85syl 17 . . . . . . . . . . . . 13 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑘)) → (𝐺𝑗) = ((𝐵𝑗) / (!‘𝑗)))
8786oveq2d 6829 . . . . . . . . . . . 12 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑘)) → (((𝐴↑(𝑘𝑗)) / (!‘(𝑘𝑗))) · (𝐺𝑗)) = (((𝐴↑(𝑘𝑗)) / (!‘(𝑘𝑗))) · ((𝐵𝑗) / (!‘𝑗))))
8872, 64nnmulcld 11260 . . . . . . . . . . . . . . 15 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑘)) → ((!‘(𝑘𝑗)) · (!‘𝑗)) ∈ ℕ)
8988nncnd 11228 . . . . . . . . . . . . . 14 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑘)) → ((!‘(𝑘𝑗)) · (!‘𝑗)) ∈ ℂ)
9088nnne0d 11257 . . . . . . . . . . . . . 14 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑘)) → ((!‘(𝑘𝑗)) · (!‘𝑗)) ≠ 0)
9159, 89, 90divrec2d 10997 . . . . . . . . . . . . 13 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑘)) → (((𝐴↑(𝑘𝑗)) · (𝐵𝑗)) / ((!‘(𝑘𝑗)) · (!‘𝑗))) = ((1 / ((!‘(𝑘𝑗)) · (!‘𝑗))) · ((𝐴↑(𝑘𝑗)) · (𝐵𝑗))))
9254, 73, 58, 65, 74, 66divmuldivd 11034 . . . . . . . . . . . . 13 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑘)) → (((𝐴↑(𝑘𝑗)) / (!‘(𝑘𝑗))) · ((𝐵𝑗) / (!‘𝑗))) = (((𝐴↑(𝑘𝑗)) · (𝐵𝑗)) / ((!‘(𝑘𝑗)) · (!‘𝑗))))
93 bcval2 13286 . . . . . . . . . . . . . . . . 17 (𝑗 ∈ (0...𝑘) → (𝑘C𝑗) = ((!‘𝑘) / ((!‘(𝑘𝑗)) · (!‘𝑗))))
9493adantl 473 . . . . . . . . . . . . . . . 16 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑘)) → (𝑘C𝑗) = ((!‘𝑘) / ((!‘(𝑘𝑗)) · (!‘𝑗))))
9594oveq1d 6828 . . . . . . . . . . . . . . 15 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑘)) → ((𝑘C𝑗) / (!‘𝑘)) = (((!‘𝑘) / ((!‘(𝑘𝑗)) · (!‘𝑗))) / (!‘𝑘)))
9647adantr 472 . . . . . . . . . . . . . . . . 17 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑘)) → (!‘𝑘) ∈ ℂ)
9761adantr 472 . . . . . . . . . . . . . . . . 17 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑘)) → (!‘𝑘) ≠ 0)
9896, 89, 96, 90, 97divdiv32d 11018 . . . . . . . . . . . . . . . 16 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑘)) → (((!‘𝑘) / ((!‘(𝑘𝑗)) · (!‘𝑗))) / (!‘𝑘)) = (((!‘𝑘) / (!‘𝑘)) / ((!‘(𝑘𝑗)) · (!‘𝑗))))
9996, 97dividd 10991 . . . . . . . . . . . . . . . . 17 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑘)) → ((!‘𝑘) / (!‘𝑘)) = 1)
10099oveq1d 6828 . . . . . . . . . . . . . . . 16 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑘)) → (((!‘𝑘) / (!‘𝑘)) / ((!‘(𝑘𝑗)) · (!‘𝑗))) = (1 / ((!‘(𝑘𝑗)) · (!‘𝑗))))
10198, 100eqtrd 2794 . . . . . . . . . . . . . . 15 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑘)) → (((!‘𝑘) / ((!‘(𝑘𝑗)) · (!‘𝑗))) / (!‘𝑘)) = (1 / ((!‘(𝑘𝑗)) · (!‘𝑗))))
10295, 101eqtrd 2794 . . . . . . . . . . . . . 14 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑘)) → ((𝑘C𝑗) / (!‘𝑘)) = (1 / ((!‘(𝑘𝑗)) · (!‘𝑗))))
103102oveq1d 6828 . . . . . . . . . . . . 13 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑘)) → (((𝑘C𝑗) / (!‘𝑘)) · ((𝐴↑(𝑘𝑗)) · (𝐵𝑗))) = ((1 / ((!‘(𝑘𝑗)) · (!‘𝑗))) · ((𝐴↑(𝑘𝑗)) · (𝐵𝑗))))
10491, 92, 1033eqtr4rd 2805 . . . . . . . . . . . 12 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑘)) → (((𝑘C𝑗) / (!‘𝑘)) · ((𝐴↑(𝑘𝑗)) · (𝐵𝑗))) = (((𝐴↑(𝑘𝑗)) / (!‘(𝑘𝑗))) · ((𝐵𝑗) / (!‘𝑗))))
10587, 104eqtr4d 2797 . . . . . . . . . . 11 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑘)) → (((𝐴↑(𝑘𝑗)) / (!‘(𝑘𝑗))) · (𝐺𝑗)) = (((𝑘C𝑗) / (!‘𝑘)) · ((𝐴↑(𝑘𝑗)) · (𝐵𝑗))))
106 nn0cn 11494 . . . . . . . . . . . . . . . . 17 (𝑘 ∈ ℕ0𝑘 ∈ ℂ)
107106ad2antlr 765 . . . . . . . . . . . . . . . 16 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑘)) → 𝑘 ∈ ℂ)
108107addid2d 10429 . . . . . . . . . . . . . . 15 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑘)) → (0 + 𝑘) = 𝑘)
109108oveq1d 6828 . . . . . . . . . . . . . 14 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑘)) → ((0 + 𝑘) − 𝑗) = (𝑘𝑗))
110109oveq2d 6829 . . . . . . . . . . . . 13 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑘)) → (𝐴↑((0 + 𝑘) − 𝑗)) = (𝐴↑(𝑘𝑗)))
111109fveq2d 6356 . . . . . . . . . . . . 13 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑘)) → (!‘((0 + 𝑘) − 𝑗)) = (!‘(𝑘𝑗)))
112110, 111oveq12d 6831 . . . . . . . . . . . 12 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑘)) → ((𝐴↑((0 + 𝑘) − 𝑗)) / (!‘((0 + 𝑘) − 𝑗))) = ((𝐴↑(𝑘𝑗)) / (!‘(𝑘𝑗))))
113109oveq2d 6829 . . . . . . . . . . . . . 14 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑘)) → (𝑘 − ((0 + 𝑘) − 𝑗)) = (𝑘 − (𝑘𝑗)))
114 nn0cn 11494 . . . . . . . . . . . . . . . 16 (𝑗 ∈ ℕ0𝑗 ∈ ℂ)
11557, 114syl 17 . . . . . . . . . . . . . . 15 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑘)) → 𝑗 ∈ ℂ)
116107, 115nncand 10589 . . . . . . . . . . . . . 14 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑘)) → (𝑘 − (𝑘𝑗)) = 𝑗)
117113, 116eqtrd 2794 . . . . . . . . . . . . 13 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑘)) → (𝑘 − ((0 + 𝑘) − 𝑗)) = 𝑗)
118117fveq2d 6356 . . . . . . . . . . . 12 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑘)) → (𝐺‘(𝑘 − ((0 + 𝑘) − 𝑗))) = (𝐺𝑗))
119112, 118oveq12d 6831 . . . . . . . . . . 11 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑘)) → (((𝐴↑((0 + 𝑘) − 𝑗)) / (!‘((0 + 𝑘) − 𝑗))) · (𝐺‘(𝑘 − ((0 + 𝑘) − 𝑗)))) = (((𝐴↑(𝑘𝑗)) / (!‘(𝑘𝑗))) · (𝐺𝑗)))
12050, 59, 96, 97div23d 11030 . . . . . . . . . . 11 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑘)) → (((𝑘C𝑗) · ((𝐴↑(𝑘𝑗)) · (𝐵𝑗))) / (!‘𝑘)) = (((𝑘C𝑗) / (!‘𝑘)) · ((𝐴↑(𝑘𝑗)) · (𝐵𝑗))))
121105, 119, 1203eqtr4rd 2805 . . . . . . . . . 10 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑘)) → (((𝑘C𝑗) · ((𝐴↑(𝑘𝑗)) · (𝐵𝑗))) / (!‘𝑘)) = (((𝐴↑((0 + 𝑘) − 𝑗)) / (!‘((0 + 𝑘) − 𝑗))) · (𝐺‘(𝑘 − ((0 + 𝑘) − 𝑗)))))
122121sumeq2dv 14632 . . . . . . . . 9 ((𝜑𝑘 ∈ ℕ0) → Σ𝑗 ∈ (0...𝑘)(((𝑘C𝑗) · ((𝐴↑(𝑘𝑗)) · (𝐵𝑗))) / (!‘𝑘)) = Σ𝑗 ∈ (0...𝑘)(((𝐴↑((0 + 𝑘) − 𝑗)) / (!‘((0 + 𝑘) − 𝑗))) · (𝐺‘(𝑘 − ((0 + 𝑘) − 𝑗)))))
123 oveq2 6821 . . . . . . . . . . . . 13 (𝑗 = 𝑚 → ((0 + 𝑘) − 𝑗) = ((0 + 𝑘) − 𝑚))
124123oveq2d 6829 . . . . . . . . . . . 12 (𝑗 = 𝑚 → (𝐴↑((0 + 𝑘) − 𝑗)) = (𝐴↑((0 + 𝑘) − 𝑚)))
125123fveq2d 6356 . . . . . . . . . . . 12 (𝑗 = 𝑚 → (!‘((0 + 𝑘) − 𝑗)) = (!‘((0 + 𝑘) − 𝑚)))
126124, 125oveq12d 6831 . . . . . . . . . . 11 (𝑗 = 𝑚 → ((𝐴↑((0 + 𝑘) − 𝑗)) / (!‘((0 + 𝑘) − 𝑗))) = ((𝐴↑((0 + 𝑘) − 𝑚)) / (!‘((0 + 𝑘) − 𝑚))))
127123oveq2d 6829 . . . . . . . . . . . 12 (𝑗 = 𝑚 → (𝑘 − ((0 + 𝑘) − 𝑗)) = (𝑘 − ((0 + 𝑘) − 𝑚)))
128127fveq2d 6356 . . . . . . . . . . 11 (𝑗 = 𝑚 → (𝐺‘(𝑘 − ((0 + 𝑘) − 𝑗))) = (𝐺‘(𝑘 − ((0 + 𝑘) − 𝑚))))
129126, 128oveq12d 6831 . . . . . . . . . 10 (𝑗 = 𝑚 → (((𝐴↑((0 + 𝑘) − 𝑗)) / (!‘((0 + 𝑘) − 𝑗))) · (𝐺‘(𝑘 − ((0 + 𝑘) − 𝑗)))) = (((𝐴↑((0 + 𝑘) − 𝑚)) / (!‘((0 + 𝑘) − 𝑚))) · (𝐺‘(𝑘 − ((0 + 𝑘) − 𝑚)))))
130129cbvsumv 14625 . . . . . . . . 9 Σ𝑗 ∈ (0...𝑘)(((𝐴↑((0 + 𝑘) − 𝑗)) / (!‘((0 + 𝑘) − 𝑗))) · (𝐺‘(𝑘 − ((0 + 𝑘) − 𝑗)))) = Σ𝑚 ∈ (0...𝑘)(((𝐴↑((0 + 𝑘) − 𝑚)) / (!‘((0 + 𝑘) − 𝑚))) · (𝐺‘(𝑘 − ((0 + 𝑘) − 𝑚))))
131122, 130syl6eq 2810 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ0) → Σ𝑗 ∈ (0...𝑘)(((𝑘C𝑗) · ((𝐴↑(𝑘𝑗)) · (𝐵𝑗))) / (!‘𝑘)) = Σ𝑚 ∈ (0...𝑘)(((𝐴↑((0 + 𝑘) − 𝑚)) / (!‘((0 + 𝑘) − 𝑚))) · (𝐺‘(𝑘 − ((0 + 𝑘) − 𝑚)))))
13284, 131eqtr4d 2797 . . . . . . 7 ((𝜑𝑘 ∈ ℕ0) → Σ𝑗 ∈ (0...𝑘)(((𝐴𝑗) / (!‘𝑗)) · (𝐺‘(𝑘𝑗))) = Σ𝑗 ∈ (0...𝑘)(((𝑘C𝑗) · ((𝐴↑(𝑘𝑗)) · (𝐵𝑗))) / (!‘𝑘)))
13362, 132eqtr4d 2797 . . . . . 6 ((𝜑𝑘 ∈ ℕ0) → (Σ𝑗 ∈ (0...𝑘)((𝑘C𝑗) · ((𝐴↑(𝑘𝑗)) · (𝐵𝑗))) / (!‘𝑘)) = Σ𝑗 ∈ (0...𝑘)(((𝐴𝑗) / (!‘𝑗)) · (𝐺‘(𝑘𝑗))))
13443, 133eqtrd 2794 . . . . 5 ((𝜑𝑘 ∈ ℕ0) → (((𝐴 + 𝐵)↑𝑘) / (!‘𝑘)) = Σ𝑗 ∈ (0...𝑘)(((𝐴𝑗) / (!‘𝑗)) · (𝐺‘(𝑘𝑗))))
13537, 134eqtrd 2794 . . . 4 ((𝜑𝑘 ∈ ℕ0) → (𝐻𝑘) = Σ𝑗 ∈ (0...𝑘)(((𝐴𝑗) / (!‘𝑗)) · (𝐺‘(𝑘𝑗))))
1361abscld 14374 . . . . . 6 (𝜑 → (abs‘𝐴) ∈ ℝ)
137136recnd 10260 . . . . 5 (𝜑 → (abs‘𝐴) ∈ ℂ)
13825efcllem 15007 . . . . 5 ((abs‘𝐴) ∈ ℂ → seq0( + , (𝑛 ∈ ℕ0 ↦ (((abs‘𝐴)↑𝑛) / (!‘𝑛)))) ∈ dom ⇝ )
139137, 138syl 17 . . . 4 (𝜑 → seq0( + , (𝑛 ∈ ℕ0 ↦ (((abs‘𝐴)↑𝑛) / (!‘𝑛)))) ∈ dom ⇝ )
14031efcllem 15007 . . . . 5 (𝐵 ∈ ℂ → seq0( + , 𝐺) ∈ dom ⇝ )
1412, 140syl 17 . . . 4 (𝜑 → seq0( + , 𝐺) ∈ dom ⇝ )
1429, 28, 30, 33, 35, 135, 139, 141mertens 14817 . . 3 (𝜑 → seq0( + , 𝐻) ⇝ (Σ𝑗 ∈ ℕ0 ((𝐴𝑗) / (!‘𝑗)) · Σ𝑘 ∈ ℕ0 ((𝐵𝑘) / (!‘𝑘))))
143 efval 15009 . . . . 5 (𝐴 ∈ ℂ → (exp‘𝐴) = Σ𝑗 ∈ ℕ0 ((𝐴𝑗) / (!‘𝑗)))
1441, 143syl 17 . . . 4 (𝜑 → (exp‘𝐴) = Σ𝑗 ∈ ℕ0 ((𝐴𝑗) / (!‘𝑗)))
145 efval 15009 . . . . 5 (𝐵 ∈ ℂ → (exp‘𝐵) = Σ𝑘 ∈ ℕ0 ((𝐵𝑘) / (!‘𝑘)))
1462, 145syl 17 . . . 4 (𝜑 → (exp‘𝐵) = Σ𝑘 ∈ ℕ0 ((𝐵𝑘) / (!‘𝑘)))
147144, 146oveq12d 6831 . . 3 (𝜑 → ((exp‘𝐴) · (exp‘𝐵)) = (Σ𝑗 ∈ ℕ0 ((𝐴𝑗) / (!‘𝑗)) · Σ𝑘 ∈ ℕ0 ((𝐵𝑘) / (!‘𝑘))))
148142, 147breqtrrd 4832 . 2 (𝜑 → seq0( + , 𝐻) ⇝ ((exp‘𝐴) · (exp‘𝐵)))
149 climuni 14482 . 2 ((seq0( + , 𝐻) ⇝ (exp‘(𝐴 + 𝐵)) ∧ seq0( + , 𝐻) ⇝ ((exp‘𝐴) · (exp‘𝐵))) → (exp‘(𝐴 + 𝐵)) = ((exp‘𝐴) · (exp‘𝐵)))
1506, 148, 149syl2anc 696 1 (𝜑 → (exp‘(𝐴 + 𝐵)) = ((exp‘𝐴) · (exp‘𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383   = wceq 1632  wcel 2139  wne 2932   class class class wbr 4804  cmpt 4881  dom cdm 5266  cfv 6049  (class class class)co 6813  cc 10126  0cc0 10128  1c1 10129   + caddc 10131   · cmul 10133  cmin 10458   / cdiv 10876  cn 11212  0cn0 11484  ...cfz 12519  seqcseq 12995  cexp 13054  !cfa 13254  Ccbc 13283  abscabs 14173  cli 14414  Σcsu 14615  expce 14991
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-rep 4923  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7114  ax-inf2 8711  ax-cnex 10184  ax-resscn 10185  ax-1cn 10186  ax-icn 10187  ax-addcl 10188  ax-addrcl 10189  ax-mulcl 10190  ax-mulrcl 10191  ax-mulcom 10192  ax-addass 10193  ax-mulass 10194  ax-distr 10195  ax-i2m1 10196  ax-1ne0 10197  ax-1rid 10198  ax-rnegex 10199  ax-rrecex 10200  ax-cnre 10201  ax-pre-lttri 10202  ax-pre-lttrn 10203  ax-pre-ltadd 10204  ax-pre-mulgt0 10205  ax-pre-sup 10206  ax-addf 10207  ax-mulf 10208
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-fal 1638  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-nel 3036  df-ral 3055  df-rex 3056  df-reu 3057  df-rmo 3058  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-pss 3731  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-tp 4326  df-op 4328  df-uni 4589  df-int 4628  df-iun 4674  df-br 4805  df-opab 4865  df-mpt 4882  df-tr 4905  df-id 5174  df-eprel 5179  df-po 5187  df-so 5188  df-fr 5225  df-se 5226  df-we 5227  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-pred 5841  df-ord 5887  df-on 5888  df-lim 5889  df-suc 5890  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-isom 6058  df-riota 6774  df-ov 6816  df-oprab 6817  df-mpt2 6818  df-om 7231  df-1st 7333  df-2nd 7334  df-wrecs 7576  df-recs 7637  df-rdg 7675  df-1o 7729  df-oadd 7733  df-er 7911  df-pm 8026  df-en 8122  df-dom 8123  df-sdom 8124  df-fin 8125  df-sup 8513  df-inf 8514  df-oi 8580  df-card 8955  df-pnf 10268  df-mnf 10269  df-xr 10270  df-ltxr 10271  df-le 10272  df-sub 10460  df-neg 10461  df-div 10877  df-nn 11213  df-2 11271  df-3 11272  df-n0 11485  df-z 11570  df-uz 11880  df-rp 12026  df-ico 12374  df-fz 12520  df-fzo 12660  df-fl 12787  df-seq 12996  df-exp 13055  df-fac 13255  df-bc 13284  df-hash 13312  df-shft 14006  df-cj 14038  df-re 14039  df-im 14040  df-sqrt 14174  df-abs 14175  df-limsup 14401  df-clim 14418  df-rlim 14419  df-sum 14616  df-ef 14997
This theorem is referenced by:  efadd  15023
  Copyright terms: Public domain W3C validator