MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  efabl Structured version   Visualization version   GIF version

Theorem efabl 24516
Description: The image of a subgroup of the group +, under the exponential function of a scaled complex number, is an Abelian group. (Contributed by Paul Chapman, 25-Apr-2008.) (Revised by Mario Carneiro, 12-May-2014.) (Revised by Thierry Arnoux, 26-Jan-2020.)
Hypotheses
Ref Expression
efabl.1 𝐹 = (𝑥𝑋 ↦ (exp‘(𝐴 · 𝑥)))
efabl.2 𝐺 = ((mulGrp‘ℂfld) ↾s ran 𝐹)
efabl.3 (𝜑𝐴 ∈ ℂ)
efabl.4 (𝜑𝑋 ∈ (SubGrp‘ℂfld))
Assertion
Ref Expression
efabl (𝜑𝐺 ∈ Abel)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐹   𝑥,𝐺   𝑥,𝑋   𝜑,𝑥

Proof of Theorem efabl
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 eqid 2760 . 2 (Base‘(ℂflds 𝑋)) = (Base‘(ℂflds 𝑋))
2 eqid 2760 . 2 (Base‘𝐺) = (Base‘𝐺)
3 eqid 2760 . 2 (+g‘(ℂflds 𝑋)) = (+g‘(ℂflds 𝑋))
4 eqid 2760 . 2 (+g𝐺) = (+g𝐺)
5 simp1 1131 . . 3 ((𝜑𝑥 ∈ (Base‘(ℂflds 𝑋)) ∧ 𝑦 ∈ (Base‘(ℂflds 𝑋))) → 𝜑)
6 simp2 1132 . . . 4 ((𝜑𝑥 ∈ (Base‘(ℂflds 𝑋)) ∧ 𝑦 ∈ (Base‘(ℂflds 𝑋))) → 𝑥 ∈ (Base‘(ℂflds 𝑋)))
7 efabl.4 . . . . . 6 (𝜑𝑋 ∈ (SubGrp‘ℂfld))
8 eqid 2760 . . . . . . 7 (ℂflds 𝑋) = (ℂflds 𝑋)
98subgbas 17819 . . . . . 6 (𝑋 ∈ (SubGrp‘ℂfld) → 𝑋 = (Base‘(ℂflds 𝑋)))
107, 9syl 17 . . . . 5 (𝜑𝑋 = (Base‘(ℂflds 𝑋)))
11103ad2ant1 1128 . . . 4 ((𝜑𝑥 ∈ (Base‘(ℂflds 𝑋)) ∧ 𝑦 ∈ (Base‘(ℂflds 𝑋))) → 𝑋 = (Base‘(ℂflds 𝑋)))
126, 11eleqtrrd 2842 . . 3 ((𝜑𝑥 ∈ (Base‘(ℂflds 𝑋)) ∧ 𝑦 ∈ (Base‘(ℂflds 𝑋))) → 𝑥𝑋)
13 simp3 1133 . . . 4 ((𝜑𝑥 ∈ (Base‘(ℂflds 𝑋)) ∧ 𝑦 ∈ (Base‘(ℂflds 𝑋))) → 𝑦 ∈ (Base‘(ℂflds 𝑋)))
1413, 11eleqtrrd 2842 . . 3 ((𝜑𝑥 ∈ (Base‘(ℂflds 𝑋)) ∧ 𝑦 ∈ (Base‘(ℂflds 𝑋))) → 𝑦𝑋)
15 efabl.3 . . . . . 6 (𝜑𝐴 ∈ ℂ)
1615, 7jca 555 . . . . 5 (𝜑 → (𝐴 ∈ ℂ ∧ 𝑋 ∈ (SubGrp‘ℂfld)))
17 efabl.1 . . . . . 6 𝐹 = (𝑥𝑋 ↦ (exp‘(𝐴 · 𝑥)))
1817efgh 24507 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝑋 ∈ (SubGrp‘ℂfld)) ∧ 𝑥𝑋𝑦𝑋) → (𝐹‘(𝑥 + 𝑦)) = ((𝐹𝑥) · (𝐹𝑦)))
1916, 18syl3an1 1167 . . . 4 ((𝜑𝑥𝑋𝑦𝑋) → (𝐹‘(𝑥 + 𝑦)) = ((𝐹𝑥) · (𝐹𝑦)))
20 cnfldadd 19973 . . . . . . . . 9 + = (+g‘ℂfld)
218, 20ressplusg 16215 . . . . . . . 8 (𝑋 ∈ (SubGrp‘ℂfld) → + = (+g‘(ℂflds 𝑋)))
227, 21syl 17 . . . . . . 7 (𝜑 → + = (+g‘(ℂflds 𝑋)))
23223ad2ant1 1128 . . . . . 6 ((𝜑𝑥𝑋𝑦𝑋) → + = (+g‘(ℂflds 𝑋)))
2423oveqd 6831 . . . . 5 ((𝜑𝑥𝑋𝑦𝑋) → (𝑥 + 𝑦) = (𝑥(+g‘(ℂflds 𝑋))𝑦))
2524fveq2d 6357 . . . 4 ((𝜑𝑥𝑋𝑦𝑋) → (𝐹‘(𝑥 + 𝑦)) = (𝐹‘(𝑥(+g‘(ℂflds 𝑋))𝑦)))
26 mptexg 6649 . . . . . . . . 9 (𝑋 ∈ (SubGrp‘ℂfld) → (𝑥𝑋 ↦ (exp‘(𝐴 · 𝑥))) ∈ V)
2717, 26syl5eqel 2843 . . . . . . . 8 (𝑋 ∈ (SubGrp‘ℂfld) → 𝐹 ∈ V)
28 rnexg 7264 . . . . . . . 8 (𝐹 ∈ V → ran 𝐹 ∈ V)
297, 27, 283syl 18 . . . . . . 7 (𝜑 → ran 𝐹 ∈ V)
30 efabl.2 . . . . . . . 8 𝐺 = ((mulGrp‘ℂfld) ↾s ran 𝐹)
31 eqid 2760 . . . . . . . . 9 (mulGrp‘ℂfld) = (mulGrp‘ℂfld)
32 cnfldmul 19974 . . . . . . . . 9 · = (.r‘ℂfld)
3331, 32mgpplusg 18713 . . . . . . . 8 · = (+g‘(mulGrp‘ℂfld))
3430, 33ressplusg 16215 . . . . . . 7 (ran 𝐹 ∈ V → · = (+g𝐺))
3529, 34syl 17 . . . . . 6 (𝜑 → · = (+g𝐺))
36353ad2ant1 1128 . . . . 5 ((𝜑𝑥𝑋𝑦𝑋) → · = (+g𝐺))
3736oveqd 6831 . . . 4 ((𝜑𝑥𝑋𝑦𝑋) → ((𝐹𝑥) · (𝐹𝑦)) = ((𝐹𝑥)(+g𝐺)(𝐹𝑦)))
3819, 25, 373eqtr3d 2802 . . 3 ((𝜑𝑥𝑋𝑦𝑋) → (𝐹‘(𝑥(+g‘(ℂflds 𝑋))𝑦)) = ((𝐹𝑥)(+g𝐺)(𝐹𝑦)))
395, 12, 14, 38syl3anc 1477 . 2 ((𝜑𝑥 ∈ (Base‘(ℂflds 𝑋)) ∧ 𝑦 ∈ (Base‘(ℂflds 𝑋))) → (𝐹‘(𝑥(+g‘(ℂflds 𝑋))𝑦)) = ((𝐹𝑥)(+g𝐺)(𝐹𝑦)))
40 fvex 6363 . . . . 5 (exp‘(𝐴 · 𝑥)) ∈ V
4140, 17fnmpti 6183 . . . 4 𝐹 Fn 𝑋
42 dffn4 6283 . . . 4 (𝐹 Fn 𝑋𝐹:𝑋onto→ran 𝐹)
4341, 42mpbi 220 . . 3 𝐹:𝑋onto→ran 𝐹
44 eqidd 2761 . . . 4 (𝜑𝐹 = 𝐹)
45 eff 15031 . . . . . . . 8 exp:ℂ⟶ℂ
4645a1i 11 . . . . . . 7 ((𝜑𝑥𝑋) → exp:ℂ⟶ℂ)
4715adantr 472 . . . . . . . 8 ((𝜑𝑥𝑋) → 𝐴 ∈ ℂ)
48 cnfldbas 19972 . . . . . . . . . . 11 ℂ = (Base‘ℂfld)
4948subgss 17816 . . . . . . . . . 10 (𝑋 ∈ (SubGrp‘ℂfld) → 𝑋 ⊆ ℂ)
507, 49syl 17 . . . . . . . . 9 (𝜑𝑋 ⊆ ℂ)
5150sselda 3744 . . . . . . . 8 ((𝜑𝑥𝑋) → 𝑥 ∈ ℂ)
5247, 51mulcld 10272 . . . . . . 7 ((𝜑𝑥𝑋) → (𝐴 · 𝑥) ∈ ℂ)
5346, 52ffvelrnd 6524 . . . . . 6 ((𝜑𝑥𝑋) → (exp‘(𝐴 · 𝑥)) ∈ ℂ)
5453ralrimiva 3104 . . . . 5 (𝜑 → ∀𝑥𝑋 (exp‘(𝐴 · 𝑥)) ∈ ℂ)
5517rnmptss 6556 . . . . 5 (∀𝑥𝑋 (exp‘(𝐴 · 𝑥)) ∈ ℂ → ran 𝐹 ⊆ ℂ)
5631, 48mgpbas 18715 . . . . . 6 ℂ = (Base‘(mulGrp‘ℂfld))
5730, 56ressbas2 16153 . . . . 5 (ran 𝐹 ⊆ ℂ → ran 𝐹 = (Base‘𝐺))
5854, 55, 573syl 18 . . . 4 (𝜑 → ran 𝐹 = (Base‘𝐺))
5944, 10, 58foeq123d 6294 . . 3 (𝜑 → (𝐹:𝑋onto→ran 𝐹𝐹:(Base‘(ℂflds 𝑋))–onto→(Base‘𝐺)))
6043, 59mpbii 223 . 2 (𝜑𝐹:(Base‘(ℂflds 𝑋))–onto→(Base‘𝐺))
61 cnring 19990 . . . 4 fld ∈ Ring
62 ringabl 18800 . . . 4 (ℂfld ∈ Ring → ℂfld ∈ Abel)
6361, 62ax-mp 5 . . 3 fld ∈ Abel
648subgabl 18461 . . 3 ((ℂfld ∈ Abel ∧ 𝑋 ∈ (SubGrp‘ℂfld)) → (ℂflds 𝑋) ∈ Abel)
6563, 7, 64sylancr 698 . 2 (𝜑 → (ℂflds 𝑋) ∈ Abel)
661, 2, 3, 4, 39, 60, 65ghmabl 18458 1 (𝜑𝐺 ∈ Abel)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383  w3a 1072   = wceq 1632  wcel 2139  wral 3050  Vcvv 3340  wss 3715  cmpt 4881  ran crn 5267   Fn wfn 6044  wf 6045  ontowfo 6047  cfv 6049  (class class class)co 6814  cc 10146   + caddc 10151   · cmul 10153  expce 15011  Basecbs 16079  s cress 16080  +gcplusg 16163  SubGrpcsubg 17809  Abelcabl 18414  mulGrpcmgp 18709  Ringcrg 18767  fldccnfld 19968
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-rep 4923  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7115  ax-inf2 8713  ax-cnex 10204  ax-resscn 10205  ax-1cn 10206  ax-icn 10207  ax-addcl 10208  ax-addrcl 10209  ax-mulcl 10210  ax-mulrcl 10211  ax-mulcom 10212  ax-addass 10213  ax-mulass 10214  ax-distr 10215  ax-i2m1 10216  ax-1ne0 10217  ax-1rid 10218  ax-rnegex 10219  ax-rrecex 10220  ax-cnre 10221  ax-pre-lttri 10222  ax-pre-lttrn 10223  ax-pre-ltadd 10224  ax-pre-mulgt0 10225  ax-pre-sup 10226  ax-addf 10227  ax-mulf 10228
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-fal 1638  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-nel 3036  df-ral 3055  df-rex 3056  df-reu 3057  df-rmo 3058  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-pss 3731  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-tp 4326  df-op 4328  df-uni 4589  df-int 4628  df-iun 4674  df-br 4805  df-opab 4865  df-mpt 4882  df-tr 4905  df-id 5174  df-eprel 5179  df-po 5187  df-so 5188  df-fr 5225  df-se 5226  df-we 5227  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-pred 5841  df-ord 5887  df-on 5888  df-lim 5889  df-suc 5890  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-isom 6058  df-riota 6775  df-ov 6817  df-oprab 6818  df-mpt2 6819  df-om 7232  df-1st 7334  df-2nd 7335  df-wrecs 7577  df-recs 7638  df-rdg 7676  df-1o 7730  df-oadd 7734  df-er 7913  df-pm 8028  df-en 8124  df-dom 8125  df-sdom 8126  df-fin 8127  df-sup 8515  df-inf 8516  df-oi 8582  df-card 8975  df-pnf 10288  df-mnf 10289  df-xr 10290  df-ltxr 10291  df-le 10292  df-sub 10480  df-neg 10481  df-div 10897  df-nn 11233  df-2 11291  df-3 11292  df-4 11293  df-5 11294  df-6 11295  df-7 11296  df-8 11297  df-9 11298  df-n0 11505  df-z 11590  df-dec 11706  df-uz 11900  df-rp 12046  df-ico 12394  df-fz 12540  df-fzo 12680  df-fl 12807  df-seq 13016  df-exp 13075  df-fac 13275  df-bc 13304  df-hash 13332  df-shft 14026  df-cj 14058  df-re 14059  df-im 14060  df-sqrt 14194  df-abs 14195  df-limsup 14421  df-clim 14438  df-rlim 14439  df-sum 14636  df-ef 15017  df-struct 16081  df-ndx 16082  df-slot 16083  df-base 16085  df-sets 16086  df-ress 16087  df-plusg 16176  df-mulr 16177  df-starv 16178  df-tset 16182  df-ple 16183  df-ds 16186  df-unif 16187  df-0g 16324  df-mgm 17463  df-sgrp 17505  df-mnd 17516  df-grp 17646  df-minusg 17647  df-subg 17812  df-cmn 18415  df-abl 18416  df-mgp 18710  df-ur 18722  df-ring 18769  df-cring 18770  df-cnfld 19969
This theorem is referenced by:  efsubm  24517  circgrp  24518
  Copyright terms: Public domain W3C validator