![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > eeanv | Structured version Visualization version GIF version |
Description: Rearrange existential quantifiers. (Contributed by NM, 26-Jul-1995.) |
Ref | Expression |
---|---|
eeanv | ⊢ (∃𝑥∃𝑦(𝜑 ∧ 𝜓) ↔ (∃𝑥𝜑 ∧ ∃𝑦𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfv 1883 | . 2 ⊢ Ⅎ𝑦𝜑 | |
2 | nfv 1883 | . 2 ⊢ Ⅎ𝑥𝜓 | |
3 | 1, 2 | eean 2217 | 1 ⊢ (∃𝑥∃𝑦(𝜑 ∧ 𝜓) ↔ (∃𝑥𝜑 ∧ ∃𝑦𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 196 ∧ wa 383 ∃wex 1744 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-10 2059 ax-11 2074 ax-12 2087 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-ex 1745 df-nf 1750 |
This theorem is referenced by: eeeanv 2219 ee4anv 2220 2mo2 2579 cgsex2g 3270 cgsex4g 3271 vtocl2 3292 spc2egv 3326 dtru 4887 copsex2t 4986 copsex2g 4987 xpnz 5588 fununi 6002 wfrlem4 7463 wfrfun 7470 tfrlem7 7524 ener 8044 domtr 8050 unen 8081 undom 8089 sbthlem10 8120 mapen 8165 infxpenc2 8883 fseqen 8888 dfac5lem4 8987 zorn2lem6 9361 fpwwe2lem12 9501 genpnnp 9865 hashfacen 13276 summo 14492 ntrivcvgmul 14678 prodmo 14710 iscatd2 16389 gictr 17764 gsumval3eu 18351 ptbasin 21428 txcls 21455 txbasval 21457 hmphtr 21634 reconn 22678 phtpcer 22841 pcohtpy 22866 mbfi1flimlem 23534 mbfmullem 23537 itg2add 23571 spc2ed 29440 brabgaf 29546 pconnconn 31339 txsconn 31349 frrlem4 31908 frrlem5c 31911 neibastop1 32479 bj-dtru 32922 riscer 33917 br1cosscnvxrn 34364 fnchoice 39502 fzisoeu 39828 stoweidlem35 40570 elsprel 42050 |
Copyright terms: Public domain | W3C validator |