 Mathbox for Alan Sare < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ee33 Structured version   Visualization version   GIF version

Theorem ee33 39252
Description: Non-virtual deduction form of e33 39486. (Contributed by Alan Sare, 18-Mar-2012.) (Proof modification is discouraged.) (New usage is discouraged.) The following User's Proof is a Virtual Deduction proof completed automatically by the tools program completeusersproof.cmd, which invokes Mel L. O'Cat's mmj2 and Norm Megill's Metamath Proof Assistant. The completed Virtual Deduction Proof (not shown) was minimized. The minimized proof is shown.
 h1:: ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) h2:: ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜏))) h3:: ⊢ (𝜃 → (𝜏 → 𝜂)) 4:1,3: ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜏 → 𝜂)))) 5:4: ⊢ (𝜏 → (𝜑 → (𝜓 → (𝜒 → 𝜂)))) 6:2,5: ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜑 → (𝜓 → (𝜒 → 𝜂)))))) 7:6: ⊢ (𝜓 → (𝜒 → (𝜑 → (𝜓 → (𝜒 → 𝜂))))) 8:7: ⊢ (𝜒 → (𝜑 → (𝜓 → (𝜒 → 𝜂)))) qed:8: ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜂)))
Hypotheses
Ref Expression
ee33.1 (𝜑 → (𝜓 → (𝜒𝜃)))
ee33.2 (𝜑 → (𝜓 → (𝜒𝜏)))
ee33.3 (𝜃 → (𝜏𝜂))
Assertion
Ref Expression
ee33 (𝜑 → (𝜓 → (𝜒𝜂)))

Proof of Theorem ee33
StepHypRef Expression
1 ee33.1 . 2 (𝜑 → (𝜓 → (𝜒𝜃)))
2 ee33.2 . 2 (𝜑 → (𝜓 → (𝜒𝜏)))
3 ee33.3 . . 3 (𝜃 → (𝜏𝜂))
43imim3i 64 . 2 ((𝜒𝜃) → ((𝜒𝜏) → (𝜒𝜂)))
51, 2, 4syl6c 70 1 (𝜑 → (𝜓 → (𝜒𝜂)))
 Colors of variables: wff setvar class Syntax hints:   → wi 4 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7 This theorem is referenced by:  truniALT  39276  onfrALTlem2  39286  ee33an  39488  ee03  39493  ee30  39497  ee31  39504  ee32  39511  trintALT  39639
 Copyright terms: Public domain W3C validator