![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > edgvalOLD | Structured version Visualization version GIF version |
Description: Obsolete version of edgval 26161 as of 8-Dec-2021. (Contributed by AV, 1-Jan-2020.) (New usage is discouraged.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
edgvalOLD | ⊢ (𝐺 ∈ 𝑉 → (Edg‘𝐺) = ran (iEdg‘𝐺)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-edg 26160 | . . 3 ⊢ Edg = (𝑔 ∈ V ↦ ran (iEdg‘𝑔)) | |
2 | 1 | a1i 11 | . 2 ⊢ (𝐺 ∈ 𝑉 → Edg = (𝑔 ∈ V ↦ ran (iEdg‘𝑔))) |
3 | fveq2 6353 | . . . 4 ⊢ (𝑔 = 𝐺 → (iEdg‘𝑔) = (iEdg‘𝐺)) | |
4 | 3 | rneqd 5508 | . . 3 ⊢ (𝑔 = 𝐺 → ran (iEdg‘𝑔) = ran (iEdg‘𝐺)) |
5 | 4 | adantl 473 | . 2 ⊢ ((𝐺 ∈ 𝑉 ∧ 𝑔 = 𝐺) → ran (iEdg‘𝑔) = ran (iEdg‘𝐺)) |
6 | elex 3352 | . 2 ⊢ (𝐺 ∈ 𝑉 → 𝐺 ∈ V) | |
7 | fvex 6363 | . . . 4 ⊢ (iEdg‘𝐺) ∈ V | |
8 | 7 | rnex 7266 | . . 3 ⊢ ran (iEdg‘𝐺) ∈ V |
9 | 8 | a1i 11 | . 2 ⊢ (𝐺 ∈ 𝑉 → ran (iEdg‘𝐺) ∈ V) |
10 | 2, 5, 6, 9 | fvmptd 6451 | 1 ⊢ (𝐺 ∈ 𝑉 → (Edg‘𝐺) = ran (iEdg‘𝐺)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1632 ∈ wcel 2139 Vcvv 3340 ↦ cmpt 4881 ran crn 5267 ‘cfv 6049 iEdgciedg 26095 Edgcedg 26159 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-8 2141 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-sep 4933 ax-nul 4941 ax-pr 5055 ax-un 7115 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-eu 2611 df-mo 2612 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ral 3055 df-rex 3056 df-rab 3059 df-v 3342 df-sbc 3577 df-csb 3675 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-nul 4059 df-if 4231 df-sn 4322 df-pr 4324 df-op 4328 df-uni 4589 df-br 4805 df-opab 4865 df-mpt 4882 df-id 5174 df-xp 5272 df-rel 5273 df-cnv 5274 df-co 5275 df-dm 5276 df-rn 5277 df-iota 6012 df-fun 6051 df-fv 6057 df-edg 26160 |
This theorem is referenced by: edgiedgbOLD 26168 edg0iedg0OLD 26170 edginwlkOLD 26762 |
Copyright terms: Public domain | W3C validator |