![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > edgval | Structured version Visualization version GIF version |
Description: The edges of a graph. (Contributed by AV, 1-Jan-2020.) (Revised by AV, 13-Oct-2020.) (Revised by AV, 8-Dec-2021.) |
Ref | Expression |
---|---|
edgval | ⊢ (Edg‘𝐺) = ran (iEdg‘𝐺) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-edg 25985 | . . . 4 ⊢ Edg = (𝑔 ∈ V ↦ ran (iEdg‘𝑔)) | |
2 | 1 | a1i 11 | . . 3 ⊢ (𝐺 ∈ V → Edg = (𝑔 ∈ V ↦ ran (iEdg‘𝑔))) |
3 | fveq2 6229 | . . . . 5 ⊢ (𝑔 = 𝐺 → (iEdg‘𝑔) = (iEdg‘𝐺)) | |
4 | 3 | rneqd 5385 | . . . 4 ⊢ (𝑔 = 𝐺 → ran (iEdg‘𝑔) = ran (iEdg‘𝐺)) |
5 | 4 | adantl 481 | . . 3 ⊢ ((𝐺 ∈ V ∧ 𝑔 = 𝐺) → ran (iEdg‘𝑔) = ran (iEdg‘𝐺)) |
6 | id 22 | . . 3 ⊢ (𝐺 ∈ V → 𝐺 ∈ V) | |
7 | fvex 6239 | . . . . 5 ⊢ (iEdg‘𝐺) ∈ V | |
8 | 7 | rnex 7142 | . . . 4 ⊢ ran (iEdg‘𝐺) ∈ V |
9 | 8 | a1i 11 | . . 3 ⊢ (𝐺 ∈ V → ran (iEdg‘𝐺) ∈ V) |
10 | 2, 5, 6, 9 | fvmptd 6327 | . 2 ⊢ (𝐺 ∈ V → (Edg‘𝐺) = ran (iEdg‘𝐺)) |
11 | rn0 5409 | . . . 4 ⊢ ran ∅ = ∅ | |
12 | 11 | a1i 11 | . . 3 ⊢ (¬ 𝐺 ∈ V → ran ∅ = ∅) |
13 | fvprc 6223 | . . . 4 ⊢ (¬ 𝐺 ∈ V → (iEdg‘𝐺) = ∅) | |
14 | 13 | rneqd 5385 | . . 3 ⊢ (¬ 𝐺 ∈ V → ran (iEdg‘𝐺) = ran ∅) |
15 | fvprc 6223 | . . 3 ⊢ (¬ 𝐺 ∈ V → (Edg‘𝐺) = ∅) | |
16 | 12, 14, 15 | 3eqtr4rd 2696 | . 2 ⊢ (¬ 𝐺 ∈ V → (Edg‘𝐺) = ran (iEdg‘𝐺)) |
17 | 10, 16 | pm2.61i 176 | 1 ⊢ (Edg‘𝐺) = ran (iEdg‘𝐺) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 = wceq 1523 ∈ wcel 2030 Vcvv 3231 ∅c0 3948 ↦ cmpt 4762 ran crn 5144 ‘cfv 5926 iEdgciedg 25920 Edgcedg 25984 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-8 2032 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-sep 4814 ax-nul 4822 ax-pow 4873 ax-pr 4936 ax-un 6991 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-mo 2503 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ral 2946 df-rex 2947 df-rab 2950 df-v 3233 df-sbc 3469 df-csb 3567 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-nul 3949 df-if 4120 df-sn 4211 df-pr 4213 df-op 4217 df-uni 4469 df-br 4686 df-opab 4746 df-mpt 4763 df-id 5053 df-xp 5149 df-rel 5150 df-cnv 5151 df-co 5152 df-dm 5153 df-rn 5154 df-iota 5889 df-fun 5928 df-fv 5934 df-edg 25985 |
This theorem is referenced by: iedgedg 25988 edgopval 25989 edgstruct 25991 edgiedgb 25992 edg0iedg0 25994 uhgredgn0 26068 upgredgss 26072 umgredgss 26073 edgupgr 26074 uhgrvtxedgiedgb 26076 upgredg 26077 usgredgss 26099 ausgrumgri 26107 ausgrusgri 26108 uspgrf1oedg 26113 uspgrupgrushgr 26117 usgrumgruspgr 26120 usgruspgrb 26121 usgrf1oedg 26144 uhgr2edg 26145 usgrsizedg 26152 usgredg3 26153 ushgredgedg 26166 ushgredgedgloop 26168 usgr1e 26182 edg0usgr 26190 usgr1v0edg 26194 usgrexmpledg 26199 subgrprop3 26213 0grsubgr 26215 0uhgrsubgr 26216 subgruhgredgd 26221 uhgrspansubgrlem 26227 uhgrspan1 26240 upgrres1 26250 usgredgffibi 26261 dfnbgr3 26276 nbupgrres 26310 usgrnbcnvfv 26311 cplgrop 26389 cusgrexi 26395 structtocusgr 26398 cusgrsize 26406 1loopgredg 26453 1egrvtxdg0 26463 umgr2v2eedg 26476 edginwlk 26586 wlkl1loop 26590 wlkvtxedg 26596 uspgr2wlkeq 26598 wlkiswwlks1 26821 wlkiswwlks2lem4 26826 wlkiswwlks2lem5 26827 wlkiswwlks2 26829 wlkiswwlksupgr2 26831 2pthon3v 26908 umgrwwlks2on 26923 clwlkclwwlk 26968 clwlksfclwwlk 27049 |
Copyright terms: Public domain | W3C validator |