![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > edg0usgr | Structured version Visualization version GIF version |
Description: A class without edges is a simple graph. Since ran 𝐹 = ∅ does not generally imply Fun 𝐹, but Fun (iEdg‘𝐺) is required for 𝐺 to be a simple graph, however, this must be provided as assertion. (Contributed by AV, 18-Oct-2020.) |
Ref | Expression |
---|---|
edg0usgr | ⊢ ((𝐺 ∈ 𝑊 ∧ (Edg‘𝐺) = ∅ ∧ Fun (iEdg‘𝐺)) → 𝐺 ∈ USGraph) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | edgval 25986 | . . . . 5 ⊢ (Edg‘𝐺) = ran (iEdg‘𝐺) | |
2 | 1 | a1i 11 | . . . 4 ⊢ (𝐺 ∈ 𝑊 → (Edg‘𝐺) = ran (iEdg‘𝐺)) |
3 | 2 | eqeq1d 2653 | . . 3 ⊢ (𝐺 ∈ 𝑊 → ((Edg‘𝐺) = ∅ ↔ ran (iEdg‘𝐺) = ∅)) |
4 | funrel 5943 | . . . . . 6 ⊢ (Fun (iEdg‘𝐺) → Rel (iEdg‘𝐺)) | |
5 | relrn0 5415 | . . . . . . 7 ⊢ (Rel (iEdg‘𝐺) → ((iEdg‘𝐺) = ∅ ↔ ran (iEdg‘𝐺) = ∅)) | |
6 | 5 | bicomd 213 | . . . . . 6 ⊢ (Rel (iEdg‘𝐺) → (ran (iEdg‘𝐺) = ∅ ↔ (iEdg‘𝐺) = ∅)) |
7 | 4, 6 | syl 17 | . . . . 5 ⊢ (Fun (iEdg‘𝐺) → (ran (iEdg‘𝐺) = ∅ ↔ (iEdg‘𝐺) = ∅)) |
8 | simpr 476 | . . . . . . 7 ⊢ (((iEdg‘𝐺) = ∅ ∧ 𝐺 ∈ 𝑊) → 𝐺 ∈ 𝑊) | |
9 | simpl 472 | . . . . . . 7 ⊢ (((iEdg‘𝐺) = ∅ ∧ 𝐺 ∈ 𝑊) → (iEdg‘𝐺) = ∅) | |
10 | 8, 9 | usgr0e 26173 | . . . . . 6 ⊢ (((iEdg‘𝐺) = ∅ ∧ 𝐺 ∈ 𝑊) → 𝐺 ∈ USGraph) |
11 | 10 | ex 449 | . . . . 5 ⊢ ((iEdg‘𝐺) = ∅ → (𝐺 ∈ 𝑊 → 𝐺 ∈ USGraph)) |
12 | 7, 11 | syl6bi 243 | . . . 4 ⊢ (Fun (iEdg‘𝐺) → (ran (iEdg‘𝐺) = ∅ → (𝐺 ∈ 𝑊 → 𝐺 ∈ USGraph))) |
13 | 12 | com13 88 | . . 3 ⊢ (𝐺 ∈ 𝑊 → (ran (iEdg‘𝐺) = ∅ → (Fun (iEdg‘𝐺) → 𝐺 ∈ USGraph))) |
14 | 3, 13 | sylbid 230 | . 2 ⊢ (𝐺 ∈ 𝑊 → ((Edg‘𝐺) = ∅ → (Fun (iEdg‘𝐺) → 𝐺 ∈ USGraph))) |
15 | 14 | 3imp 1275 | 1 ⊢ ((𝐺 ∈ 𝑊 ∧ (Edg‘𝐺) = ∅ ∧ Fun (iEdg‘𝐺)) → 𝐺 ∈ USGraph) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 383 ∧ w3a 1054 = wceq 1523 ∈ wcel 2030 ∅c0 3948 ran crn 5144 Rel wrel 5148 Fun wfun 5920 ‘cfv 5926 iEdgciedg 25920 Edgcedg 25984 USGraphcusgr 26089 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-8 2032 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-sep 4814 ax-nul 4822 ax-pow 4873 ax-pr 4936 ax-un 6991 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-mo 2503 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ral 2946 df-rex 2947 df-rab 2950 df-v 3233 df-sbc 3469 df-csb 3567 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-nul 3949 df-if 4120 df-pw 4193 df-sn 4211 df-pr 4213 df-op 4217 df-uni 4469 df-br 4686 df-opab 4746 df-mpt 4763 df-id 5053 df-xp 5149 df-rel 5150 df-cnv 5151 df-co 5152 df-dm 5153 df-rn 5154 df-iota 5889 df-fun 5928 df-fn 5929 df-f 5930 df-f1 5931 df-fv 5934 df-edg 25985 df-usgr 26091 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |