![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > edg0iedg0 | Structured version Visualization version GIF version |
Description: There is no edge in a graph iff its edge function is empty. (Contributed by AV, 15-Dec-2020.) (Revised by AV, 8-Dec-2021.) |
Ref | Expression |
---|---|
edg0iedg0.i | ⊢ 𝐼 = (iEdg‘𝐺) |
edg0iedg0.e | ⊢ 𝐸 = (Edg‘𝐺) |
Ref | Expression |
---|---|
edg0iedg0 | ⊢ (Fun 𝐼 → (𝐸 = ∅ ↔ 𝐼 = ∅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | edg0iedg0.e | . . . . 5 ⊢ 𝐸 = (Edg‘𝐺) | |
2 | edgval 26061 | . . . . 5 ⊢ (Edg‘𝐺) = ran (iEdg‘𝐺) | |
3 | 1, 2 | eqtri 2746 | . . . 4 ⊢ 𝐸 = ran (iEdg‘𝐺) |
4 | 3 | eqeq1i 2729 | . . 3 ⊢ (𝐸 = ∅ ↔ ran (iEdg‘𝐺) = ∅) |
5 | 4 | a1i 11 | . 2 ⊢ (Fun 𝐼 → (𝐸 = ∅ ↔ ran (iEdg‘𝐺) = ∅)) |
6 | edg0iedg0.i | . . . . . 6 ⊢ 𝐼 = (iEdg‘𝐺) | |
7 | 6 | eqcomi 2733 | . . . . 5 ⊢ (iEdg‘𝐺) = 𝐼 |
8 | 7 | rneqi 5459 | . . . 4 ⊢ ran (iEdg‘𝐺) = ran 𝐼 |
9 | 8 | eqeq1i 2729 | . . 3 ⊢ (ran (iEdg‘𝐺) = ∅ ↔ ran 𝐼 = ∅) |
10 | 9 | a1i 11 | . 2 ⊢ (Fun 𝐼 → (ran (iEdg‘𝐺) = ∅ ↔ ran 𝐼 = ∅)) |
11 | funrel 6018 | . . 3 ⊢ (Fun 𝐼 → Rel 𝐼) | |
12 | relrn0 5490 | . . . 4 ⊢ (Rel 𝐼 → (𝐼 = ∅ ↔ ran 𝐼 = ∅)) | |
13 | 12 | bicomd 213 | . . 3 ⊢ (Rel 𝐼 → (ran 𝐼 = ∅ ↔ 𝐼 = ∅)) |
14 | 11, 13 | syl 17 | . 2 ⊢ (Fun 𝐼 → (ran 𝐼 = ∅ ↔ 𝐼 = ∅)) |
15 | 5, 10, 14 | 3bitrd 294 | 1 ⊢ (Fun 𝐼 → (𝐸 = ∅ ↔ 𝐼 = ∅)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 = wceq 1596 ∅c0 4023 ran crn 5219 Rel wrel 5223 Fun wfun 5995 ‘cfv 6001 iEdgciedg 25995 Edgcedg 26059 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1835 ax-4 1850 ax-5 1952 ax-6 2018 ax-7 2054 ax-8 2105 ax-9 2112 ax-10 2132 ax-11 2147 ax-12 2160 ax-13 2355 ax-ext 2704 ax-sep 4889 ax-nul 4897 ax-pow 4948 ax-pr 5011 ax-un 7066 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1074 df-tru 1599 df-ex 1818 df-nf 1823 df-sb 2011 df-eu 2575 df-mo 2576 df-clab 2711 df-cleq 2717 df-clel 2720 df-nfc 2855 df-ral 3019 df-rex 3020 df-rab 3023 df-v 3306 df-sbc 3542 df-csb 3640 df-dif 3683 df-un 3685 df-in 3687 df-ss 3694 df-nul 4024 df-if 4195 df-sn 4286 df-pr 4288 df-op 4292 df-uni 4545 df-br 4761 df-opab 4821 df-mpt 4838 df-id 5128 df-xp 5224 df-rel 5225 df-cnv 5226 df-co 5227 df-dm 5228 df-rn 5229 df-iota 5964 df-fun 6003 df-fv 6009 df-edg 26060 |
This theorem is referenced by: uhgriedg0edg0 26142 egrsubgr 26289 vtxduhgr0e 26505 |
Copyright terms: Public domain | W3C validator |