MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ecopover Structured version   Visualization version   GIF version

Theorem ecopover 8016
Description: Assuming that operation 𝐹 is commutative (second hypothesis), closed (third hypothesis), associative (fourth hypothesis), and has the cancellation property (fifth hypothesis), show that the relation , specified by the first hypothesis, is an equivalence relation. (Contributed by NM, 16-Feb-1996.) (Revised by Mario Carneiro, 12-Aug-2015.) (Proof shortened by AV, 1-May-2021.)
Hypotheses
Ref Expression
ecopopr.1 = {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (𝑆 × 𝑆) ∧ 𝑦 ∈ (𝑆 × 𝑆)) ∧ ∃𝑧𝑤𝑣𝑢((𝑥 = ⟨𝑧, 𝑤⟩ ∧ 𝑦 = ⟨𝑣, 𝑢⟩) ∧ (𝑧 + 𝑢) = (𝑤 + 𝑣)))}
ecopopr.com (𝑥 + 𝑦) = (𝑦 + 𝑥)
ecopopr.cl ((𝑥𝑆𝑦𝑆) → (𝑥 + 𝑦) ∈ 𝑆)
ecopopr.ass ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧))
ecopopr.can ((𝑥𝑆𝑦𝑆) → ((𝑥 + 𝑦) = (𝑥 + 𝑧) → 𝑦 = 𝑧))
Assertion
Ref Expression
ecopover Er (𝑆 × 𝑆)
Distinct variable groups:   𝑥,𝑦,𝑧,𝑤,𝑣,𝑢, +   𝑥,𝑆,𝑦,𝑧,𝑤,𝑣,𝑢
Allowed substitution hints:   (𝑥,𝑦,𝑧,𝑤,𝑣,𝑢)

Proof of Theorem ecopover
Dummy variables 𝑓 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ecopopr.1 . . 3 = {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (𝑆 × 𝑆) ∧ 𝑦 ∈ (𝑆 × 𝑆)) ∧ ∃𝑧𝑤𝑣𝑢((𝑥 = ⟨𝑧, 𝑤⟩ ∧ 𝑦 = ⟨𝑣, 𝑢⟩) ∧ (𝑧 + 𝑢) = (𝑤 + 𝑣)))}
21relopabi 5399 . 2 Rel
3 ecopopr.com . . 3 (𝑥 + 𝑦) = (𝑦 + 𝑥)
41, 3ecopovsym 8014 . 2 (𝑓 𝑔𝑔 𝑓)
5 ecopopr.cl . . 3 ((𝑥𝑆𝑦𝑆) → (𝑥 + 𝑦) ∈ 𝑆)
6 ecopopr.ass . . 3 ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧))
7 ecopopr.can . . 3 ((𝑥𝑆𝑦𝑆) → ((𝑥 + 𝑦) = (𝑥 + 𝑧) → 𝑦 = 𝑧))
81, 3, 5, 6, 7ecopovtrn 8015 . 2 ((𝑓 𝑔𝑔 ) → 𝑓 )
9 vex 3341 . . . . . . . . 9 𝑔 ∈ V
10 vex 3341 . . . . . . . . 9 ∈ V
119, 10, 3caovcom 6994 . . . . . . . 8 (𝑔 + ) = ( + 𝑔)
121ecopoveq 8013 . . . . . . . 8 (((𝑔𝑆𝑆) ∧ (𝑔𝑆𝑆)) → (⟨𝑔, 𝑔, ⟩ ↔ (𝑔 + ) = ( + 𝑔)))
1311, 12mpbiri 248 . . . . . . 7 (((𝑔𝑆𝑆) ∧ (𝑔𝑆𝑆)) → ⟨𝑔, 𝑔, ⟩)
1413anidms 680 . . . . . 6 ((𝑔𝑆𝑆) → ⟨𝑔, 𝑔, ⟩)
1514rgen2a 3113 . . . . 5 𝑔𝑆𝑆𝑔, 𝑔,
16 breq12 4807 . . . . . . 7 ((𝑓 = ⟨𝑔, ⟩ ∧ 𝑓 = ⟨𝑔, ⟩) → (𝑓 𝑓 ↔ ⟨𝑔, 𝑔, ⟩))
1716anidms 680 . . . . . 6 (𝑓 = ⟨𝑔, ⟩ → (𝑓 𝑓 ↔ ⟨𝑔, 𝑔, ⟩))
1817ralxp 5417 . . . . 5 (∀𝑓 ∈ (𝑆 × 𝑆)𝑓 𝑓 ↔ ∀𝑔𝑆𝑆𝑔, 𝑔, ⟩)
1915, 18mpbir 221 . . . 4 𝑓 ∈ (𝑆 × 𝑆)𝑓 𝑓
2019rspec 3067 . . 3 (𝑓 ∈ (𝑆 × 𝑆) → 𝑓 𝑓)
21 opabssxp 5348 . . . . . 6 {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (𝑆 × 𝑆) ∧ 𝑦 ∈ (𝑆 × 𝑆)) ∧ ∃𝑧𝑤𝑣𝑢((𝑥 = ⟨𝑧, 𝑤⟩ ∧ 𝑦 = ⟨𝑣, 𝑢⟩) ∧ (𝑧 + 𝑢) = (𝑤 + 𝑣)))} ⊆ ((𝑆 × 𝑆) × (𝑆 × 𝑆))
221, 21eqsstri 3774 . . . . 5 ⊆ ((𝑆 × 𝑆) × (𝑆 × 𝑆))
2322ssbri 4847 . . . 4 (𝑓 𝑓𝑓((𝑆 × 𝑆) × (𝑆 × 𝑆))𝑓)
24 brxp 5302 . . . . 5 (𝑓((𝑆 × 𝑆) × (𝑆 × 𝑆))𝑓 ↔ (𝑓 ∈ (𝑆 × 𝑆) ∧ 𝑓 ∈ (𝑆 × 𝑆)))
2524simplbi 478 . . . 4 (𝑓((𝑆 × 𝑆) × (𝑆 × 𝑆))𝑓𝑓 ∈ (𝑆 × 𝑆))
2623, 25syl 17 . . 3 (𝑓 𝑓𝑓 ∈ (𝑆 × 𝑆))
2720, 26impbii 199 . 2 (𝑓 ∈ (𝑆 × 𝑆) ↔ 𝑓 𝑓)
282, 4, 8, 27iseri 7936 1 Er (𝑆 × 𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383   = wceq 1630  wex 1851  wcel 2137  wral 3048  cop 4325   class class class wbr 4802  {copab 4862   × cxp 5262  (class class class)co 6811   Er wer 7906
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1869  ax-4 1884  ax-5 1986  ax-6 2052  ax-7 2088  ax-9 2146  ax-10 2166  ax-11 2181  ax-12 2194  ax-13 2389  ax-ext 2738  ax-sep 4931  ax-nul 4939  ax-pr 5053
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1074  df-tru 1633  df-ex 1852  df-nf 1857  df-sb 2045  df-eu 2609  df-mo 2610  df-clab 2745  df-cleq 2751  df-clel 2754  df-nfc 2889  df-ral 3053  df-rex 3054  df-rab 3057  df-v 3340  df-sbc 3575  df-csb 3673  df-dif 3716  df-un 3718  df-in 3720  df-ss 3727  df-nul 4057  df-if 4229  df-sn 4320  df-pr 4322  df-op 4326  df-uni 4587  df-iun 4672  df-br 4803  df-opab 4863  df-xp 5270  df-rel 5271  df-cnv 5272  df-co 5273  df-dm 5274  df-iota 6010  df-fv 6055  df-ov 6814  df-er 7909
This theorem is referenced by:  enqer  9933  enrer  10076
  Copyright terms: Public domain W3C validator