![]() |
Mathbox for Alan Sare |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > e22 | Structured version Visualization version GIF version |
Description: A virtual deduction elimination rule. (Contributed by Alan Sare, 2-May-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
e22.1 | ⊢ ( 𝜑 , 𝜓 ▶ 𝜒 ) |
e22.2 | ⊢ ( 𝜑 , 𝜓 ▶ 𝜃 ) |
e22.3 | ⊢ (𝜒 → (𝜃 → 𝜏)) |
Ref | Expression |
---|---|
e22 | ⊢ ( 𝜑 , 𝜓 ▶ 𝜏 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | e22.1 | . 2 ⊢ ( 𝜑 , 𝜓 ▶ 𝜒 ) | |
2 | e22.2 | . 2 ⊢ ( 𝜑 , 𝜓 ▶ 𝜃 ) | |
3 | e22.3 | . . 3 ⊢ (𝜒 → (𝜃 → 𝜏)) | |
4 | 3 | a1i 11 | . 2 ⊢ (𝜒 → (𝜒 → (𝜃 → 𝜏))) |
5 | 1, 1, 2, 4 | e222 39382 | 1 ⊢ ( 𝜑 , 𝜓 ▶ 𝜏 ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ( wvd2 39314 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 197 df-an 385 df-vd2 39315 |
This theorem is referenced by: e22an 39418 e02 39443 e12 39472 e20 39475 e21 39478 sspwtr 39569 pwtrVD 39577 pwtrrVD 39578 elex22VD 39592 tpid3gVD 39595 en3lplem2VD 39597 imbi12VD 39627 truniALTVD 39632 trintALTVD 39634 onfrALTlem3VD 39641 onfrALTlem2VD 39643 ax6e2eqVD 39661 ax6e2ndeqVD 39663 sb5ALTVD 39667 |
Copyright terms: Public domain | W3C validator |