![]() |
Mathbox for Alan Sare |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > e1a | Structured version Visualization version GIF version |
Description: A Virtual deduction elimination rule. syl 17 is e1a 39169 without virtual deductions. (Contributed by Alan Sare, 11-Jun-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
e1a.1 | ⊢ ( 𝜑 ▶ 𝜓 ) |
e1a.2 | ⊢ (𝜓 → 𝜒) |
Ref | Expression |
---|---|
e1a | ⊢ ( 𝜑 ▶ 𝜒 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | e1a.1 | . . . 4 ⊢ ( 𝜑 ▶ 𝜓 ) | |
2 | 1 | in1 39104 | . . 3 ⊢ (𝜑 → 𝜓) |
3 | e1a.2 | . . 3 ⊢ (𝜓 → 𝜒) | |
4 | 2, 3 | syl 17 | . 2 ⊢ (𝜑 → 𝜒) |
5 | 4 | dfvd1ir 39106 | 1 ⊢ ( 𝜑 ▶ 𝜒 ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ( wvd1 39102 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 197 df-vd1 39103 |
This theorem is referenced by: e1bi 39171 e1bir 39172 snelpwrVD 39380 unipwrVD 39381 sstrALT2VD 39383 elex2VD 39387 elex22VD 39388 eqsbc3rVD 39389 zfregs2VD 39390 tpid3gVD 39391 en3lplem1VD 39392 en3lpVD 39394 3ornot23VD 39396 3orbi123VD 39399 sbc3orgVD 39400 exbirVD 39402 3impexpVD 39405 3impexpbicomVD 39406 sbcoreleleqVD 39409 tratrbVD 39411 al2imVD 39412 syl5impVD 39413 ssralv2VD 39416 ordelordALTVD 39417 sbcim2gVD 39425 trsbcVD 39427 truniALTVD 39428 trintALTVD 39430 undif3VD 39432 sbcssgVD 39433 csbingVD 39434 onfrALTlem3VD 39437 simplbi2comtVD 39438 onfrALTlem2VD 39439 onfrALTVD 39441 csbeq2gVD 39442 csbsngVD 39443 csbxpgVD 39444 csbresgVD 39445 csbrngVD 39446 csbima12gALTVD 39447 csbunigVD 39448 csbfv12gALTVD 39449 con5VD 39450 relopabVD 39451 19.41rgVD 39452 2pm13.193VD 39453 hbimpgVD 39454 hbalgVD 39455 hbexgVD 39456 ax6e2eqVD 39457 ax6e2ndVD 39458 ax6e2ndeqVD 39459 2sb5ndVD 39460 2uasbanhVD 39461 e2ebindVD 39462 sb5ALTVD 39463 vk15.4jVD 39464 notnotrALTVD 39465 con3ALTVD 39466 |
Copyright terms: Public domain | W3C validator |