![]() |
Mathbox for Alan Sare |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > e11 | Structured version Visualization version GIF version |
Description: A virtual deduction elimination rule. (Contributed by Alan Sare, 14-Jun-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
e11.1 | ⊢ ( 𝜑 ▶ 𝜓 ) |
e11.2 | ⊢ ( 𝜑 ▶ 𝜒 ) |
e11.3 | ⊢ (𝜓 → (𝜒 → 𝜃)) |
Ref | Expression |
---|---|
e11 | ⊢ ( 𝜑 ▶ 𝜃 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | e11.1 | . 2 ⊢ ( 𝜑 ▶ 𝜓 ) | |
2 | e11.2 | . 2 ⊢ ( 𝜑 ▶ 𝜒 ) | |
3 | e11.3 | . . 3 ⊢ (𝜓 → (𝜒 → 𝜃)) | |
4 | 3 | a1i 11 | . 2 ⊢ (𝜓 → (𝜓 → (𝜒 → 𝜃))) |
5 | 1, 1, 2, 4 | e111 39216 | 1 ⊢ ( 𝜑 ▶ 𝜃 ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ( wvd1 39102 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 197 df-vd1 39103 |
This theorem is referenced by: e11an 39231 e01 39233 e10 39236 elex2VD 39387 elex22VD 39388 eqsbc3rVD 39389 tpid3gVD 39391 3ornot23VD 39396 orbi1rVD 39397 3orbi123VD 39399 sbc3orgVD 39400 sbcoreleleqVD 39409 ordelordALTVD 39417 sbcim2gVD 39425 trsbcVD 39427 undif3VD 39432 sbcssgVD 39433 csbingVD 39434 onfrALTVD 39441 csbeq2gVD 39442 csbsngVD 39443 csbxpgVD 39444 csbresgVD 39445 csbrngVD 39446 csbima12gALTVD 39447 csbunigVD 39448 csbfv12gALTVD 39449 19.41rgVD 39452 2pm13.193VD 39453 hbimpgVD 39454 ax6e2eqVD 39457 2uasbanhVD 39461 notnotrALTVD 39465 |
Copyright terms: Public domain | W3C validator |