![]() |
Mathbox for Alan Sare |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > e10 | Structured version Visualization version GIF version |
Description: A virtual deduction elimination rule (see mpisyl 21). (Contributed by Alan Sare, 14-Jun-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
e10.1 | ⊢ ( 𝜑 ▶ 𝜓 ) |
e10.2 | ⊢ 𝜒 |
e10.3 | ⊢ (𝜓 → (𝜒 → 𝜃)) |
Ref | Expression |
---|---|
e10 | ⊢ ( 𝜑 ▶ 𝜃 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | e10.1 | . 2 ⊢ ( 𝜑 ▶ 𝜓 ) | |
2 | e10.2 | . . 3 ⊢ 𝜒 | |
3 | 2 | vd01 39139 | . 2 ⊢ ( 𝜑 ▶ 𝜒 ) |
4 | e10.3 | . 2 ⊢ (𝜓 → (𝜒 → 𝜃)) | |
5 | 1, 3, 4 | e11 39230 | 1 ⊢ ( 𝜑 ▶ 𝜃 ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ( wvd1 39102 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 197 df-vd1 39103 |
This theorem is referenced by: e10an 39237 en3lpVD 39394 3orbi123VD 39399 sbc3orgVD 39400 exbiriVD 39403 3impexpVD 39405 3impexpbicomVD 39406 al2imVD 39412 equncomVD 39418 trsbcVD 39427 sbcssgVD 39433 csbingVD 39434 onfrALTVD 39441 csbsngVD 39443 csbxpgVD 39444 csbresgVD 39445 csbrngVD 39446 csbima12gALTVD 39447 csbunigVD 39448 csbfv12gALTVD 39449 con5VD 39450 hbimpgVD 39454 hbalgVD 39455 hbexgVD 39456 ax6e2eqVD 39457 ax6e2ndeqVD 39459 e2ebindVD 39462 sb5ALTVD 39463 |
Copyright terms: Public domain | W3C validator |