![]() |
Mathbox for Alan Sare |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > e01 | Structured version Visualization version GIF version |
Description: A virtual deduction elimination rule. (Contributed by Alan Sare, 25-Jul-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
e01.1 | ⊢ 𝜑 |
e01.2 | ⊢ ( 𝜓 ▶ 𝜒 ) |
e01.3 | ⊢ (𝜑 → (𝜒 → 𝜃)) |
Ref | Expression |
---|---|
e01 | ⊢ ( 𝜓 ▶ 𝜃 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | e01.1 | . . 3 ⊢ 𝜑 | |
2 | 1 | vd01 39324 | . 2 ⊢ ( 𝜓 ▶ 𝜑 ) |
3 | e01.2 | . 2 ⊢ ( 𝜓 ▶ 𝜒 ) | |
4 | e01.3 | . 2 ⊢ (𝜑 → (𝜒 → 𝜃)) | |
5 | 2, 3, 4 | e11 39415 | 1 ⊢ ( 𝜓 ▶ 𝜃 ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ( wvd1 39287 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 197 df-vd1 39288 |
This theorem is referenced by: e01an 39419 trsspwALT 39547 sspwtr 39550 pwtrVD 39558 pwtrrVD 39559 snssiALTVD 39561 snelpwrVD 39565 sstrALT2VD 39568 suctrALT2VD 39570 3impexpVD 39590 ax6e2eqVD 39642 ax6e2ndVD 39643 2sb5ndVD 39645 vk15.4jVD 39649 |
Copyright terms: Public domain | W3C validator |