MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dyadmbllem Structured version   Visualization version   GIF version

Theorem dyadmbllem 23413
Description: Lemma for dyadmbl 23414. (Contributed by Mario Carneiro, 26-Mar-2015.)
Hypotheses
Ref Expression
dyadmbl.1 𝐹 = (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩)
dyadmbl.2 𝐺 = {𝑧𝐴 ∣ ∀𝑤𝐴 (([,]‘𝑧) ⊆ ([,]‘𝑤) → 𝑧 = 𝑤)}
dyadmbl.3 (𝜑𝐴 ⊆ ran 𝐹)
Assertion
Ref Expression
dyadmbllem (𝜑 ([,] “ 𝐴) = ([,] “ 𝐺))
Distinct variable groups:   𝑥,𝑦   𝑧,𝑤,𝜑   𝑥,𝑤,𝑦,𝐴,𝑧   𝑧,𝐺   𝑤,𝐹,𝑥,𝑦,𝑧
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝐺(𝑥,𝑦,𝑤)

Proof of Theorem dyadmbllem
Dummy variables 𝑎 𝑚 𝑡 𝑖 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eluni2 4472 . . . 4 (𝑎 ([,] “ 𝐴) ↔ ∃𝑖 ∈ ([,] “ 𝐴)𝑎𝑖)
2 iccf 12310 . . . . . . 7 [,]:(ℝ* × ℝ*)⟶𝒫 ℝ*
3 ffn 6083 . . . . . . 7 ([,]:(ℝ* × ℝ*)⟶𝒫 ℝ* → [,] Fn (ℝ* × ℝ*))
42, 3ax-mp 5 . . . . . 6 [,] Fn (ℝ* × ℝ*)
5 dyadmbl.3 . . . . . . 7 (𝜑𝐴 ⊆ ran 𝐹)
6 dyadmbl.1 . . . . . . . . . 10 𝐹 = (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩)
76dyadf 23405 . . . . . . . . 9 𝐹:(ℤ × ℕ0)⟶( ≤ ∩ (ℝ × ℝ))
8 frn 6091 . . . . . . . . 9 (𝐹:(ℤ × ℕ0)⟶( ≤ ∩ (ℝ × ℝ)) → ran 𝐹 ⊆ ( ≤ ∩ (ℝ × ℝ)))
97, 8ax-mp 5 . . . . . . . 8 ran 𝐹 ⊆ ( ≤ ∩ (ℝ × ℝ))
10 inss2 3867 . . . . . . . . 9 ( ≤ ∩ (ℝ × ℝ)) ⊆ (ℝ × ℝ)
11 rexpssxrxp 10122 . . . . . . . . 9 (ℝ × ℝ) ⊆ (ℝ* × ℝ*)
1210, 11sstri 3645 . . . . . . . 8 ( ≤ ∩ (ℝ × ℝ)) ⊆ (ℝ* × ℝ*)
139, 12sstri 3645 . . . . . . 7 ran 𝐹 ⊆ (ℝ* × ℝ*)
145, 13syl6ss 3648 . . . . . 6 (𝜑𝐴 ⊆ (ℝ* × ℝ*))
15 eleq2 2719 . . . . . . 7 (𝑖 = ([,]‘𝑡) → (𝑎𝑖𝑎 ∈ ([,]‘𝑡)))
1615rexima 6537 . . . . . 6 (([,] Fn (ℝ* × ℝ*) ∧ 𝐴 ⊆ (ℝ* × ℝ*)) → (∃𝑖 ∈ ([,] “ 𝐴)𝑎𝑖 ↔ ∃𝑡𝐴 𝑎 ∈ ([,]‘𝑡)))
174, 14, 16sylancr 696 . . . . 5 (𝜑 → (∃𝑖 ∈ ([,] “ 𝐴)𝑎𝑖 ↔ ∃𝑡𝐴 𝑎 ∈ ([,]‘𝑡)))
18 ssrab2 3720 . . . . . . . . 9 {𝑎𝐴 ∣ ([,]‘𝑡) ⊆ ([,]‘𝑎)} ⊆ 𝐴
195adantr 480 . . . . . . . . 9 ((𝜑 ∧ (𝑡𝐴𝑎 ∈ ([,]‘𝑡))) → 𝐴 ⊆ ran 𝐹)
2018, 19syl5ss 3647 . . . . . . . 8 ((𝜑 ∧ (𝑡𝐴𝑎 ∈ ([,]‘𝑡))) → {𝑎𝐴 ∣ ([,]‘𝑡) ⊆ ([,]‘𝑎)} ⊆ ran 𝐹)
21 simprl 809 . . . . . . . . . 10 ((𝜑 ∧ (𝑡𝐴𝑎 ∈ ([,]‘𝑡))) → 𝑡𝐴)
22 ssid 3657 . . . . . . . . . 10 ([,]‘𝑡) ⊆ ([,]‘𝑡)
23 fveq2 6229 . . . . . . . . . . . 12 (𝑎 = 𝑡 → ([,]‘𝑎) = ([,]‘𝑡))
2423sseq2d 3666 . . . . . . . . . . 11 (𝑎 = 𝑡 → (([,]‘𝑡) ⊆ ([,]‘𝑎) ↔ ([,]‘𝑡) ⊆ ([,]‘𝑡)))
2524rspcev 3340 . . . . . . . . . 10 ((𝑡𝐴 ∧ ([,]‘𝑡) ⊆ ([,]‘𝑡)) → ∃𝑎𝐴 ([,]‘𝑡) ⊆ ([,]‘𝑎))
2621, 22, 25sylancl 695 . . . . . . . . 9 ((𝜑 ∧ (𝑡𝐴𝑎 ∈ ([,]‘𝑡))) → ∃𝑎𝐴 ([,]‘𝑡) ⊆ ([,]‘𝑎))
27 rabn0 3991 . . . . . . . . 9 ({𝑎𝐴 ∣ ([,]‘𝑡) ⊆ ([,]‘𝑎)} ≠ ∅ ↔ ∃𝑎𝐴 ([,]‘𝑡) ⊆ ([,]‘𝑎))
2826, 27sylibr 224 . . . . . . . 8 ((𝜑 ∧ (𝑡𝐴𝑎 ∈ ([,]‘𝑡))) → {𝑎𝐴 ∣ ([,]‘𝑡) ⊆ ([,]‘𝑎)} ≠ ∅)
296dyadmax 23412 . . . . . . . 8 (({𝑎𝐴 ∣ ([,]‘𝑡) ⊆ ([,]‘𝑎)} ⊆ ran 𝐹 ∧ {𝑎𝐴 ∣ ([,]‘𝑡) ⊆ ([,]‘𝑎)} ≠ ∅) → ∃𝑚 ∈ {𝑎𝐴 ∣ ([,]‘𝑡) ⊆ ([,]‘𝑎)}∀𝑤 ∈ {𝑎𝐴 ∣ ([,]‘𝑡) ⊆ ([,]‘𝑎)} (([,]‘𝑚) ⊆ ([,]‘𝑤) → 𝑚 = 𝑤))
3020, 28, 29syl2anc 694 . . . . . . 7 ((𝜑 ∧ (𝑡𝐴𝑎 ∈ ([,]‘𝑡))) → ∃𝑚 ∈ {𝑎𝐴 ∣ ([,]‘𝑡) ⊆ ([,]‘𝑎)}∀𝑤 ∈ {𝑎𝐴 ∣ ([,]‘𝑡) ⊆ ([,]‘𝑎)} (([,]‘𝑚) ⊆ ([,]‘𝑤) → 𝑚 = 𝑤))
31 fveq2 6229 . . . . . . . . . . 11 (𝑎 = 𝑚 → ([,]‘𝑎) = ([,]‘𝑚))
3231sseq2d 3666 . . . . . . . . . 10 (𝑎 = 𝑚 → (([,]‘𝑡) ⊆ ([,]‘𝑎) ↔ ([,]‘𝑡) ⊆ ([,]‘𝑚)))
3332elrab 3396 . . . . . . . . 9 (𝑚 ∈ {𝑎𝐴 ∣ ([,]‘𝑡) ⊆ ([,]‘𝑎)} ↔ (𝑚𝐴 ∧ ([,]‘𝑡) ⊆ ([,]‘𝑚)))
34 simprlr 820 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑡𝐴𝑎 ∈ ([,]‘𝑡))) ∧ ((𝑚𝐴 ∧ ([,]‘𝑡) ⊆ ([,]‘𝑚)) ∧ ∀𝑤 ∈ {𝑎𝐴 ∣ ([,]‘𝑡) ⊆ ([,]‘𝑎)} (([,]‘𝑚) ⊆ ([,]‘𝑤) → 𝑚 = 𝑤))) → ([,]‘𝑡) ⊆ ([,]‘𝑚))
35 simplrr 818 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑡𝐴𝑎 ∈ ([,]‘𝑡))) ∧ ((𝑚𝐴 ∧ ([,]‘𝑡) ⊆ ([,]‘𝑚)) ∧ ∀𝑤 ∈ {𝑎𝐴 ∣ ([,]‘𝑡) ⊆ ([,]‘𝑎)} (([,]‘𝑚) ⊆ ([,]‘𝑤) → 𝑚 = 𝑤))) → 𝑎 ∈ ([,]‘𝑡))
3634, 35sseldd 3637 . . . . . . . . . . 11 (((𝜑 ∧ (𝑡𝐴𝑎 ∈ ([,]‘𝑡))) ∧ ((𝑚𝐴 ∧ ([,]‘𝑡) ⊆ ([,]‘𝑚)) ∧ ∀𝑤 ∈ {𝑎𝐴 ∣ ([,]‘𝑡) ⊆ ([,]‘𝑎)} (([,]‘𝑚) ⊆ ([,]‘𝑤) → 𝑚 = 𝑤))) → 𝑎 ∈ ([,]‘𝑚))
37 simprll 819 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑡𝐴𝑎 ∈ ([,]‘𝑡))) ∧ ((𝑚𝐴 ∧ ([,]‘𝑡) ⊆ ([,]‘𝑚)) ∧ ∀𝑤 ∈ {𝑎𝐴 ∣ ([,]‘𝑡) ⊆ ([,]‘𝑎)} (([,]‘𝑚) ⊆ ([,]‘𝑤) → 𝑚 = 𝑤))) → 𝑚𝐴)
38 fveq2 6229 . . . . . . . . . . . . . . . . . . . 20 (𝑎 = 𝑤 → ([,]‘𝑎) = ([,]‘𝑤))
3938sseq2d 3666 . . . . . . . . . . . . . . . . . . 19 (𝑎 = 𝑤 → (([,]‘𝑡) ⊆ ([,]‘𝑎) ↔ ([,]‘𝑡) ⊆ ([,]‘𝑤)))
4039elrab 3396 . . . . . . . . . . . . . . . . . 18 (𝑤 ∈ {𝑎𝐴 ∣ ([,]‘𝑡) ⊆ ([,]‘𝑎)} ↔ (𝑤𝐴 ∧ ([,]‘𝑡) ⊆ ([,]‘𝑤)))
4140imbi1i 338 . . . . . . . . . . . . . . . . 17 ((𝑤 ∈ {𝑎𝐴 ∣ ([,]‘𝑡) ⊆ ([,]‘𝑎)} → (([,]‘𝑚) ⊆ ([,]‘𝑤) → 𝑚 = 𝑤)) ↔ ((𝑤𝐴 ∧ ([,]‘𝑡) ⊆ ([,]‘𝑤)) → (([,]‘𝑚) ⊆ ([,]‘𝑤) → 𝑚 = 𝑤)))
42 impexp 461 . . . . . . . . . . . . . . . . 17 (((𝑤𝐴 ∧ ([,]‘𝑡) ⊆ ([,]‘𝑤)) → (([,]‘𝑚) ⊆ ([,]‘𝑤) → 𝑚 = 𝑤)) ↔ (𝑤𝐴 → (([,]‘𝑡) ⊆ ([,]‘𝑤) → (([,]‘𝑚) ⊆ ([,]‘𝑤) → 𝑚 = 𝑤))))
4341, 42bitri 264 . . . . . . . . . . . . . . . 16 ((𝑤 ∈ {𝑎𝐴 ∣ ([,]‘𝑡) ⊆ ([,]‘𝑎)} → (([,]‘𝑚) ⊆ ([,]‘𝑤) → 𝑚 = 𝑤)) ↔ (𝑤𝐴 → (([,]‘𝑡) ⊆ ([,]‘𝑤) → (([,]‘𝑚) ⊆ ([,]‘𝑤) → 𝑚 = 𝑤))))
44 impexp 461 . . . . . . . . . . . . . . . . . 18 (((([,]‘𝑡) ⊆ ([,]‘𝑤) ∧ ([,]‘𝑚) ⊆ ([,]‘𝑤)) → 𝑚 = 𝑤) ↔ (([,]‘𝑡) ⊆ ([,]‘𝑤) → (([,]‘𝑚) ⊆ ([,]‘𝑤) → 𝑚 = 𝑤)))
45 sstr2 3643 . . . . . . . . . . . . . . . . . . . . 21 (([,]‘𝑡) ⊆ ([,]‘𝑚) → (([,]‘𝑚) ⊆ ([,]‘𝑤) → ([,]‘𝑡) ⊆ ([,]‘𝑤)))
4645ad2antll 765 . . . . . . . . . . . . . . . . . . . 20 (((𝜑 ∧ (𝑡𝐴𝑎 ∈ ([,]‘𝑡))) ∧ (𝑚𝐴 ∧ ([,]‘𝑡) ⊆ ([,]‘𝑚))) → (([,]‘𝑚) ⊆ ([,]‘𝑤) → ([,]‘𝑡) ⊆ ([,]‘𝑤)))
4746ancrd 576 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ (𝑡𝐴𝑎 ∈ ([,]‘𝑡))) ∧ (𝑚𝐴 ∧ ([,]‘𝑡) ⊆ ([,]‘𝑚))) → (([,]‘𝑚) ⊆ ([,]‘𝑤) → (([,]‘𝑡) ⊆ ([,]‘𝑤) ∧ ([,]‘𝑚) ⊆ ([,]‘𝑤))))
4847imim1d 82 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝑡𝐴𝑎 ∈ ([,]‘𝑡))) ∧ (𝑚𝐴 ∧ ([,]‘𝑡) ⊆ ([,]‘𝑚))) → (((([,]‘𝑡) ⊆ ([,]‘𝑤) ∧ ([,]‘𝑚) ⊆ ([,]‘𝑤)) → 𝑚 = 𝑤) → (([,]‘𝑚) ⊆ ([,]‘𝑤) → 𝑚 = 𝑤)))
4944, 48syl5bir 233 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑡𝐴𝑎 ∈ ([,]‘𝑡))) ∧ (𝑚𝐴 ∧ ([,]‘𝑡) ⊆ ([,]‘𝑚))) → ((([,]‘𝑡) ⊆ ([,]‘𝑤) → (([,]‘𝑚) ⊆ ([,]‘𝑤) → 𝑚 = 𝑤)) → (([,]‘𝑚) ⊆ ([,]‘𝑤) → 𝑚 = 𝑤)))
5049imim2d 57 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑡𝐴𝑎 ∈ ([,]‘𝑡))) ∧ (𝑚𝐴 ∧ ([,]‘𝑡) ⊆ ([,]‘𝑚))) → ((𝑤𝐴 → (([,]‘𝑡) ⊆ ([,]‘𝑤) → (([,]‘𝑚) ⊆ ([,]‘𝑤) → 𝑚 = 𝑤))) → (𝑤𝐴 → (([,]‘𝑚) ⊆ ([,]‘𝑤) → 𝑚 = 𝑤))))
5143, 50syl5bi 232 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑡𝐴𝑎 ∈ ([,]‘𝑡))) ∧ (𝑚𝐴 ∧ ([,]‘𝑡) ⊆ ([,]‘𝑚))) → ((𝑤 ∈ {𝑎𝐴 ∣ ([,]‘𝑡) ⊆ ([,]‘𝑎)} → (([,]‘𝑚) ⊆ ([,]‘𝑤) → 𝑚 = 𝑤)) → (𝑤𝐴 → (([,]‘𝑚) ⊆ ([,]‘𝑤) → 𝑚 = 𝑤))))
5251ralimdv2 2990 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑡𝐴𝑎 ∈ ([,]‘𝑡))) ∧ (𝑚𝐴 ∧ ([,]‘𝑡) ⊆ ([,]‘𝑚))) → (∀𝑤 ∈ {𝑎𝐴 ∣ ([,]‘𝑡) ⊆ ([,]‘𝑎)} (([,]‘𝑚) ⊆ ([,]‘𝑤) → 𝑚 = 𝑤) → ∀𝑤𝐴 (([,]‘𝑚) ⊆ ([,]‘𝑤) → 𝑚 = 𝑤)))
5352impr 648 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑡𝐴𝑎 ∈ ([,]‘𝑡))) ∧ ((𝑚𝐴 ∧ ([,]‘𝑡) ⊆ ([,]‘𝑚)) ∧ ∀𝑤 ∈ {𝑎𝐴 ∣ ([,]‘𝑡) ⊆ ([,]‘𝑎)} (([,]‘𝑚) ⊆ ([,]‘𝑤) → 𝑚 = 𝑤))) → ∀𝑤𝐴 (([,]‘𝑚) ⊆ ([,]‘𝑤) → 𝑚 = 𝑤))
54 fveq2 6229 . . . . . . . . . . . . . . . . 17 (𝑧 = 𝑚 → ([,]‘𝑧) = ([,]‘𝑚))
5554sseq1d 3665 . . . . . . . . . . . . . . . 16 (𝑧 = 𝑚 → (([,]‘𝑧) ⊆ ([,]‘𝑤) ↔ ([,]‘𝑚) ⊆ ([,]‘𝑤)))
56 equequ1 1998 . . . . . . . . . . . . . . . 16 (𝑧 = 𝑚 → (𝑧 = 𝑤𝑚 = 𝑤))
5755, 56imbi12d 333 . . . . . . . . . . . . . . 15 (𝑧 = 𝑚 → ((([,]‘𝑧) ⊆ ([,]‘𝑤) → 𝑧 = 𝑤) ↔ (([,]‘𝑚) ⊆ ([,]‘𝑤) → 𝑚 = 𝑤)))
5857ralbidv 3015 . . . . . . . . . . . . . 14 (𝑧 = 𝑚 → (∀𝑤𝐴 (([,]‘𝑧) ⊆ ([,]‘𝑤) → 𝑧 = 𝑤) ↔ ∀𝑤𝐴 (([,]‘𝑚) ⊆ ([,]‘𝑤) → 𝑚 = 𝑤)))
59 dyadmbl.2 . . . . . . . . . . . . . 14 𝐺 = {𝑧𝐴 ∣ ∀𝑤𝐴 (([,]‘𝑧) ⊆ ([,]‘𝑤) → 𝑧 = 𝑤)}
6058, 59elrab2 3399 . . . . . . . . . . . . 13 (𝑚𝐺 ↔ (𝑚𝐴 ∧ ∀𝑤𝐴 (([,]‘𝑚) ⊆ ([,]‘𝑤) → 𝑚 = 𝑤)))
6137, 53, 60sylanbrc 699 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑡𝐴𝑎 ∈ ([,]‘𝑡))) ∧ ((𝑚𝐴 ∧ ([,]‘𝑡) ⊆ ([,]‘𝑚)) ∧ ∀𝑤 ∈ {𝑎𝐴 ∣ ([,]‘𝑡) ⊆ ([,]‘𝑎)} (([,]‘𝑚) ⊆ ([,]‘𝑤) → 𝑚 = 𝑤))) → 𝑚𝐺)
62 ffun 6086 . . . . . . . . . . . . . 14 ([,]:(ℝ* × ℝ*)⟶𝒫 ℝ* → Fun [,])
632, 62ax-mp 5 . . . . . . . . . . . . 13 Fun [,]
64 ssrab2 3720 . . . . . . . . . . . . . . . . 17 {𝑧𝐴 ∣ ∀𝑤𝐴 (([,]‘𝑧) ⊆ ([,]‘𝑤) → 𝑧 = 𝑤)} ⊆ 𝐴
6559, 64eqsstri 3668 . . . . . . . . . . . . . . . 16 𝐺𝐴
6665, 14syl5ss 3647 . . . . . . . . . . . . . . 15 (𝜑𝐺 ⊆ (ℝ* × ℝ*))
672fdmi 6090 . . . . . . . . . . . . . . 15 dom [,] = (ℝ* × ℝ*)
6866, 67syl6sseqr 3685 . . . . . . . . . . . . . 14 (𝜑𝐺 ⊆ dom [,])
6968ad2antrr 762 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑡𝐴𝑎 ∈ ([,]‘𝑡))) ∧ ((𝑚𝐴 ∧ ([,]‘𝑡) ⊆ ([,]‘𝑚)) ∧ ∀𝑤 ∈ {𝑎𝐴 ∣ ([,]‘𝑡) ⊆ ([,]‘𝑎)} (([,]‘𝑚) ⊆ ([,]‘𝑤) → 𝑚 = 𝑤))) → 𝐺 ⊆ dom [,])
70 funfvima2 6533 . . . . . . . . . . . . 13 ((Fun [,] ∧ 𝐺 ⊆ dom [,]) → (𝑚𝐺 → ([,]‘𝑚) ∈ ([,] “ 𝐺)))
7163, 69, 70sylancr 696 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑡𝐴𝑎 ∈ ([,]‘𝑡))) ∧ ((𝑚𝐴 ∧ ([,]‘𝑡) ⊆ ([,]‘𝑚)) ∧ ∀𝑤 ∈ {𝑎𝐴 ∣ ([,]‘𝑡) ⊆ ([,]‘𝑎)} (([,]‘𝑚) ⊆ ([,]‘𝑤) → 𝑚 = 𝑤))) → (𝑚𝐺 → ([,]‘𝑚) ∈ ([,] “ 𝐺)))
7261, 71mpd 15 . . . . . . . . . . 11 (((𝜑 ∧ (𝑡𝐴𝑎 ∈ ([,]‘𝑡))) ∧ ((𝑚𝐴 ∧ ([,]‘𝑡) ⊆ ([,]‘𝑚)) ∧ ∀𝑤 ∈ {𝑎𝐴 ∣ ([,]‘𝑡) ⊆ ([,]‘𝑎)} (([,]‘𝑚) ⊆ ([,]‘𝑤) → 𝑚 = 𝑤))) → ([,]‘𝑚) ∈ ([,] “ 𝐺))
73 elunii 4473 . . . . . . . . . . 11 ((𝑎 ∈ ([,]‘𝑚) ∧ ([,]‘𝑚) ∈ ([,] “ 𝐺)) → 𝑎 ([,] “ 𝐺))
7436, 72, 73syl2anc 694 . . . . . . . . . 10 (((𝜑 ∧ (𝑡𝐴𝑎 ∈ ([,]‘𝑡))) ∧ ((𝑚𝐴 ∧ ([,]‘𝑡) ⊆ ([,]‘𝑚)) ∧ ∀𝑤 ∈ {𝑎𝐴 ∣ ([,]‘𝑡) ⊆ ([,]‘𝑎)} (([,]‘𝑚) ⊆ ([,]‘𝑤) → 𝑚 = 𝑤))) → 𝑎 ([,] “ 𝐺))
7574exp32 630 . . . . . . . . 9 ((𝜑 ∧ (𝑡𝐴𝑎 ∈ ([,]‘𝑡))) → ((𝑚𝐴 ∧ ([,]‘𝑡) ⊆ ([,]‘𝑚)) → (∀𝑤 ∈ {𝑎𝐴 ∣ ([,]‘𝑡) ⊆ ([,]‘𝑎)} (([,]‘𝑚) ⊆ ([,]‘𝑤) → 𝑚 = 𝑤) → 𝑎 ([,] “ 𝐺))))
7633, 75syl5bi 232 . . . . . . . 8 ((𝜑 ∧ (𝑡𝐴𝑎 ∈ ([,]‘𝑡))) → (𝑚 ∈ {𝑎𝐴 ∣ ([,]‘𝑡) ⊆ ([,]‘𝑎)} → (∀𝑤 ∈ {𝑎𝐴 ∣ ([,]‘𝑡) ⊆ ([,]‘𝑎)} (([,]‘𝑚) ⊆ ([,]‘𝑤) → 𝑚 = 𝑤) → 𝑎 ([,] “ 𝐺))))
7776rexlimdv 3059 . . . . . . 7 ((𝜑 ∧ (𝑡𝐴𝑎 ∈ ([,]‘𝑡))) → (∃𝑚 ∈ {𝑎𝐴 ∣ ([,]‘𝑡) ⊆ ([,]‘𝑎)}∀𝑤 ∈ {𝑎𝐴 ∣ ([,]‘𝑡) ⊆ ([,]‘𝑎)} (([,]‘𝑚) ⊆ ([,]‘𝑤) → 𝑚 = 𝑤) → 𝑎 ([,] “ 𝐺)))
7830, 77mpd 15 . . . . . 6 ((𝜑 ∧ (𝑡𝐴𝑎 ∈ ([,]‘𝑡))) → 𝑎 ([,] “ 𝐺))
7978rexlimdvaa 3061 . . . . 5 (𝜑 → (∃𝑡𝐴 𝑎 ∈ ([,]‘𝑡) → 𝑎 ([,] “ 𝐺)))
8017, 79sylbid 230 . . . 4 (𝜑 → (∃𝑖 ∈ ([,] “ 𝐴)𝑎𝑖𝑎 ([,] “ 𝐺)))
811, 80syl5bi 232 . . 3 (𝜑 → (𝑎 ([,] “ 𝐴) → 𝑎 ([,] “ 𝐺)))
8281ssrdv 3642 . 2 (𝜑 ([,] “ 𝐴) ⊆ ([,] “ 𝐺))
83 imass2 5536 . . . 4 (𝐺𝐴 → ([,] “ 𝐺) ⊆ ([,] “ 𝐴))
8465, 83ax-mp 5 . . 3 ([,] “ 𝐺) ⊆ ([,] “ 𝐴)
85 uniss 4490 . . 3 (([,] “ 𝐺) ⊆ ([,] “ 𝐴) → ([,] “ 𝐺) ⊆ ([,] “ 𝐴))
8684, 85mp1i 13 . 2 (𝜑 ([,] “ 𝐺) ⊆ ([,] “ 𝐴))
8782, 86eqssd 3653 1 (𝜑 ([,] “ 𝐴) = ([,] “ 𝐺))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383   = wceq 1523  wcel 2030  wne 2823  wral 2941  wrex 2942  {crab 2945  cin 3606  wss 3607  c0 3948  𝒫 cpw 4191  cop 4216   cuni 4468   × cxp 5141  dom cdm 5143  ran crn 5144  cima 5146  Fun wfun 5920   Fn wfn 5921  wf 5922  cfv 5926  (class class class)co 6690  cmpt2 6692  cr 9973  1c1 9975   + caddc 9977  *cxr 10111  cle 10113   / cdiv 10722  2c2 11108  0cn0 11330  cz 11415  [,]cicc 12216  cexp 12900
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-inf2 8576  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051  ax-pre-sup 10052
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-fal 1529  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-int 4508  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-se 5103  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-isom 5935  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-om 7108  df-1st 7210  df-2nd 7211  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-1o 7605  df-oadd 7609  df-er 7787  df-map 7901  df-en 7998  df-dom 7999  df-sdom 8000  df-fin 8001  df-fi 8358  df-sup 8389  df-inf 8390  df-oi 8456  df-card 8803  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-div 10723  df-nn 11059  df-2 11117  df-3 11118  df-n0 11331  df-z 11416  df-uz 11726  df-q 11827  df-rp 11871  df-xneg 11984  df-xadd 11985  df-xmul 11986  df-ioo 12217  df-ico 12219  df-icc 12220  df-fz 12365  df-fzo 12505  df-seq 12842  df-exp 12901  df-hash 13158  df-cj 13883  df-re 13884  df-im 13885  df-sqrt 14019  df-abs 14020  df-clim 14263  df-sum 14461  df-rest 16130  df-topgen 16151  df-psmet 19786  df-xmet 19787  df-met 19788  df-bl 19789  df-mopn 19790  df-top 20747  df-topon 20764  df-bases 20798  df-cmp 21238  df-ovol 23279
This theorem is referenced by:  dyadmbl  23414  mblfinlem1  33576  mblfinlem2  33577
  Copyright terms: Public domain W3C validator