MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dyaddisjlem Structured version   Visualization version   GIF version

Theorem dyaddisjlem 23409
Description: Lemma for dyaddisj 23410. (Contributed by Mario Carneiro, 26-Mar-2015.)
Hypothesis
Ref Expression
dyadmbl.1 𝐹 = (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩)
Assertion
Ref Expression
dyaddisjlem ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0𝐷 ∈ ℕ0)) ∧ 𝐶𝐷) → (([,]‘(𝐴𝐹𝐶)) ⊆ ([,]‘(𝐵𝐹𝐷)) ∨ ([,]‘(𝐵𝐹𝐷)) ⊆ ([,]‘(𝐴𝐹𝐶)) ∨ (((,)‘(𝐴𝐹𝐶)) ∩ ((,)‘(𝐵𝐹𝐷))) = ∅))
Distinct variable groups:   𝑥,𝑦,𝐵   𝑥,𝐶,𝑦   𝑥,𝐴,𝑦   𝑥,𝐷,𝑦   𝑥,𝐹,𝑦

Proof of Theorem dyaddisjlem
StepHypRef Expression
1 simplll 813 . . . . . . . . . 10 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0𝐷 ∈ ℕ0)) ∧ 𝐶𝐷) → 𝐴 ∈ ℤ)
2 simplrl 817 . . . . . . . . . 10 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0𝐷 ∈ ℕ0)) ∧ 𝐶𝐷) → 𝐶 ∈ ℕ0)
3 dyadmbl.1 . . . . . . . . . . 11 𝐹 = (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩)
43dyadval 23406 . . . . . . . . . 10 ((𝐴 ∈ ℤ ∧ 𝐶 ∈ ℕ0) → (𝐴𝐹𝐶) = ⟨(𝐴 / (2↑𝐶)), ((𝐴 + 1) / (2↑𝐶))⟩)
51, 2, 4syl2anc 694 . . . . . . . . 9 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0𝐷 ∈ ℕ0)) ∧ 𝐶𝐷) → (𝐴𝐹𝐶) = ⟨(𝐴 / (2↑𝐶)), ((𝐴 + 1) / (2↑𝐶))⟩)
65fveq2d 6233 . . . . . . . 8 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0𝐷 ∈ ℕ0)) ∧ 𝐶𝐷) → ((,)‘(𝐴𝐹𝐶)) = ((,)‘⟨(𝐴 / (2↑𝐶)), ((𝐴 + 1) / (2↑𝐶))⟩))
7 df-ov 6693 . . . . . . . 8 ((𝐴 / (2↑𝐶))(,)((𝐴 + 1) / (2↑𝐶))) = ((,)‘⟨(𝐴 / (2↑𝐶)), ((𝐴 + 1) / (2↑𝐶))⟩)
86, 7syl6eqr 2703 . . . . . . 7 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0𝐷 ∈ ℕ0)) ∧ 𝐶𝐷) → ((,)‘(𝐴𝐹𝐶)) = ((𝐴 / (2↑𝐶))(,)((𝐴 + 1) / (2↑𝐶))))
9 simpllr 815 . . . . . . . . . 10 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0𝐷 ∈ ℕ0)) ∧ 𝐶𝐷) → 𝐵 ∈ ℤ)
10 simplrr 818 . . . . . . . . . 10 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0𝐷 ∈ ℕ0)) ∧ 𝐶𝐷) → 𝐷 ∈ ℕ0)
113dyadval 23406 . . . . . . . . . 10 ((𝐵 ∈ ℤ ∧ 𝐷 ∈ ℕ0) → (𝐵𝐹𝐷) = ⟨(𝐵 / (2↑𝐷)), ((𝐵 + 1) / (2↑𝐷))⟩)
129, 10, 11syl2anc 694 . . . . . . . . 9 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0𝐷 ∈ ℕ0)) ∧ 𝐶𝐷) → (𝐵𝐹𝐷) = ⟨(𝐵 / (2↑𝐷)), ((𝐵 + 1) / (2↑𝐷))⟩)
1312fveq2d 6233 . . . . . . . 8 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0𝐷 ∈ ℕ0)) ∧ 𝐶𝐷) → ((,)‘(𝐵𝐹𝐷)) = ((,)‘⟨(𝐵 / (2↑𝐷)), ((𝐵 + 1) / (2↑𝐷))⟩))
14 df-ov 6693 . . . . . . . 8 ((𝐵 / (2↑𝐷))(,)((𝐵 + 1) / (2↑𝐷))) = ((,)‘⟨(𝐵 / (2↑𝐷)), ((𝐵 + 1) / (2↑𝐷))⟩)
1513, 14syl6eqr 2703 . . . . . . 7 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0𝐷 ∈ ℕ0)) ∧ 𝐶𝐷) → ((,)‘(𝐵𝐹𝐷)) = ((𝐵 / (2↑𝐷))(,)((𝐵 + 1) / (2↑𝐷))))
168, 15ineq12d 3848 . . . . . 6 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0𝐷 ∈ ℕ0)) ∧ 𝐶𝐷) → (((,)‘(𝐴𝐹𝐶)) ∩ ((,)‘(𝐵𝐹𝐷))) = (((𝐴 / (2↑𝐶))(,)((𝐴 + 1) / (2↑𝐶))) ∩ ((𝐵 / (2↑𝐷))(,)((𝐵 + 1) / (2↑𝐷)))))
17 incom 3838 . . . . . 6 (((𝐴 / (2↑𝐶))(,)((𝐴 + 1) / (2↑𝐶))) ∩ ((𝐵 / (2↑𝐷))(,)((𝐵 + 1) / (2↑𝐷)))) = (((𝐵 / (2↑𝐷))(,)((𝐵 + 1) / (2↑𝐷))) ∩ ((𝐴 / (2↑𝐶))(,)((𝐴 + 1) / (2↑𝐶))))
1816, 17syl6eq 2701 . . . . 5 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0𝐷 ∈ ℕ0)) ∧ 𝐶𝐷) → (((,)‘(𝐴𝐹𝐶)) ∩ ((,)‘(𝐵𝐹𝐷))) = (((𝐵 / (2↑𝐷))(,)((𝐵 + 1) / (2↑𝐷))) ∩ ((𝐴 / (2↑𝐶))(,)((𝐴 + 1) / (2↑𝐶)))))
1918adantr 480 . . . 4 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0𝐷 ∈ ℕ0)) ∧ 𝐶𝐷) ∧ (𝐵 / (2↑𝐷)) < (𝐴 / (2↑𝐶))) → (((,)‘(𝐴𝐹𝐶)) ∩ ((,)‘(𝐵𝐹𝐷))) = (((𝐵 / (2↑𝐷))(,)((𝐵 + 1) / (2↑𝐷))) ∩ ((𝐴 / (2↑𝐶))(,)((𝐴 + 1) / (2↑𝐶)))))
201zred 11520 . . . . . . . . . . 11 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0𝐷 ∈ ℕ0)) ∧ 𝐶𝐷) → 𝐴 ∈ ℝ)
2120recnd 10106 . . . . . . . . . 10 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0𝐷 ∈ ℕ0)) ∧ 𝐶𝐷) → 𝐴 ∈ ℂ)
22 2nn 11223 . . . . . . . . . . . 12 2 ∈ ℕ
23 nnexpcl 12913 . . . . . . . . . . . 12 ((2 ∈ ℕ ∧ 𝐶 ∈ ℕ0) → (2↑𝐶) ∈ ℕ)
2422, 2, 23sylancr 696 . . . . . . . . . . 11 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0𝐷 ∈ ℕ0)) ∧ 𝐶𝐷) → (2↑𝐶) ∈ ℕ)
2524nncnd 11074 . . . . . . . . . 10 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0𝐷 ∈ ℕ0)) ∧ 𝐶𝐷) → (2↑𝐶) ∈ ℂ)
26 nnexpcl 12913 . . . . . . . . . . . 12 ((2 ∈ ℕ ∧ 𝐷 ∈ ℕ0) → (2↑𝐷) ∈ ℕ)
2722, 10, 26sylancr 696 . . . . . . . . . . 11 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0𝐷 ∈ ℕ0)) ∧ 𝐶𝐷) → (2↑𝐷) ∈ ℕ)
2827nncnd 11074 . . . . . . . . . 10 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0𝐷 ∈ ℕ0)) ∧ 𝐶𝐷) → (2↑𝐷) ∈ ℂ)
2924nnne0d 11103 . . . . . . . . . 10 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0𝐷 ∈ ℕ0)) ∧ 𝐶𝐷) → (2↑𝐶) ≠ 0)
3021, 25, 28, 29div13d 10863 . . . . . . . . 9 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0𝐷 ∈ ℕ0)) ∧ 𝐶𝐷) → ((𝐴 / (2↑𝐶)) · (2↑𝐷)) = (((2↑𝐷) / (2↑𝐶)) · 𝐴))
31 2cnd 11131 . . . . . . . . . . . 12 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0𝐷 ∈ ℕ0)) ∧ 𝐶𝐷) → 2 ∈ ℂ)
32 2ne0 11151 . . . . . . . . . . . . 13 2 ≠ 0
3332a1i 11 . . . . . . . . . . . 12 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0𝐷 ∈ ℕ0)) ∧ 𝐶𝐷) → 2 ≠ 0)
342nn0zd 11518 . . . . . . . . . . . 12 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0𝐷 ∈ ℕ0)) ∧ 𝐶𝐷) → 𝐶 ∈ ℤ)
3510nn0zd 11518 . . . . . . . . . . . 12 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0𝐷 ∈ ℕ0)) ∧ 𝐶𝐷) → 𝐷 ∈ ℤ)
3631, 33, 34, 35expsubd 13059 . . . . . . . . . . 11 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0𝐷 ∈ ℕ0)) ∧ 𝐶𝐷) → (2↑(𝐷𝐶)) = ((2↑𝐷) / (2↑𝐶)))
37 2z 11447 . . . . . . . . . . . 12 2 ∈ ℤ
38 simpr 476 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0𝐷 ∈ ℕ0)) ∧ 𝐶𝐷) → 𝐶𝐷)
39 znn0sub 11462 . . . . . . . . . . . . . 14 ((𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ) → (𝐶𝐷 ↔ (𝐷𝐶) ∈ ℕ0))
4034, 35, 39syl2anc 694 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0𝐷 ∈ ℕ0)) ∧ 𝐶𝐷) → (𝐶𝐷 ↔ (𝐷𝐶) ∈ ℕ0))
4138, 40mpbid 222 . . . . . . . . . . . 12 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0𝐷 ∈ ℕ0)) ∧ 𝐶𝐷) → (𝐷𝐶) ∈ ℕ0)
42 zexpcl 12915 . . . . . . . . . . . 12 ((2 ∈ ℤ ∧ (𝐷𝐶) ∈ ℕ0) → (2↑(𝐷𝐶)) ∈ ℤ)
4337, 41, 42sylancr 696 . . . . . . . . . . 11 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0𝐷 ∈ ℕ0)) ∧ 𝐶𝐷) → (2↑(𝐷𝐶)) ∈ ℤ)
4436, 43eqeltrrd 2731 . . . . . . . . . 10 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0𝐷 ∈ ℕ0)) ∧ 𝐶𝐷) → ((2↑𝐷) / (2↑𝐶)) ∈ ℤ)
4544, 1zmulcld 11526 . . . . . . . . 9 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0𝐷 ∈ ℕ0)) ∧ 𝐶𝐷) → (((2↑𝐷) / (2↑𝐶)) · 𝐴) ∈ ℤ)
4630, 45eqeltrd 2730 . . . . . . . 8 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0𝐷 ∈ ℕ0)) ∧ 𝐶𝐷) → ((𝐴 / (2↑𝐶)) · (2↑𝐷)) ∈ ℤ)
47 zltp1le 11465 . . . . . . . 8 ((𝐵 ∈ ℤ ∧ ((𝐴 / (2↑𝐶)) · (2↑𝐷)) ∈ ℤ) → (𝐵 < ((𝐴 / (2↑𝐶)) · (2↑𝐷)) ↔ (𝐵 + 1) ≤ ((𝐴 / (2↑𝐶)) · (2↑𝐷))))
489, 46, 47syl2anc 694 . . . . . . 7 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0𝐷 ∈ ℕ0)) ∧ 𝐶𝐷) → (𝐵 < ((𝐴 / (2↑𝐶)) · (2↑𝐷)) ↔ (𝐵 + 1) ≤ ((𝐴 / (2↑𝐶)) · (2↑𝐷))))
499zred 11520 . . . . . . . 8 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0𝐷 ∈ ℕ0)) ∧ 𝐶𝐷) → 𝐵 ∈ ℝ)
5020, 24nndivred 11107 . . . . . . . 8 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0𝐷 ∈ ℕ0)) ∧ 𝐶𝐷) → (𝐴 / (2↑𝐶)) ∈ ℝ)
5127nnred 11073 . . . . . . . 8 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0𝐷 ∈ ℕ0)) ∧ 𝐶𝐷) → (2↑𝐷) ∈ ℝ)
5227nngt0d 11102 . . . . . . . 8 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0𝐷 ∈ ℕ0)) ∧ 𝐶𝐷) → 0 < (2↑𝐷))
53 ltdivmul2 10938 . . . . . . . 8 ((𝐵 ∈ ℝ ∧ (𝐴 / (2↑𝐶)) ∈ ℝ ∧ ((2↑𝐷) ∈ ℝ ∧ 0 < (2↑𝐷))) → ((𝐵 / (2↑𝐷)) < (𝐴 / (2↑𝐶)) ↔ 𝐵 < ((𝐴 / (2↑𝐶)) · (2↑𝐷))))
5449, 50, 51, 52, 53syl112anc 1370 . . . . . . 7 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0𝐷 ∈ ℕ0)) ∧ 𝐶𝐷) → ((𝐵 / (2↑𝐷)) < (𝐴 / (2↑𝐶)) ↔ 𝐵 < ((𝐴 / (2↑𝐶)) · (2↑𝐷))))
55 peano2re 10247 . . . . . . . . 9 (𝐵 ∈ ℝ → (𝐵 + 1) ∈ ℝ)
5649, 55syl 17 . . . . . . . 8 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0𝐷 ∈ ℕ0)) ∧ 𝐶𝐷) → (𝐵 + 1) ∈ ℝ)
57 ledivmul2 10940 . . . . . . . 8 (((𝐵 + 1) ∈ ℝ ∧ (𝐴 / (2↑𝐶)) ∈ ℝ ∧ ((2↑𝐷) ∈ ℝ ∧ 0 < (2↑𝐷))) → (((𝐵 + 1) / (2↑𝐷)) ≤ (𝐴 / (2↑𝐶)) ↔ (𝐵 + 1) ≤ ((𝐴 / (2↑𝐶)) · (2↑𝐷))))
5856, 50, 51, 52, 57syl112anc 1370 . . . . . . 7 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0𝐷 ∈ ℕ0)) ∧ 𝐶𝐷) → (((𝐵 + 1) / (2↑𝐷)) ≤ (𝐴 / (2↑𝐶)) ↔ (𝐵 + 1) ≤ ((𝐴 / (2↑𝐶)) · (2↑𝐷))))
5948, 54, 583bitr4d 300 . . . . . 6 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0𝐷 ∈ ℕ0)) ∧ 𝐶𝐷) → ((𝐵 / (2↑𝐷)) < (𝐴 / (2↑𝐶)) ↔ ((𝐵 + 1) / (2↑𝐷)) ≤ (𝐴 / (2↑𝐶))))
6049, 27nndivred 11107 . . . . . . . 8 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0𝐷 ∈ ℕ0)) ∧ 𝐶𝐷) → (𝐵 / (2↑𝐷)) ∈ ℝ)
6160rexrd 10127 . . . . . . 7 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0𝐷 ∈ ℕ0)) ∧ 𝐶𝐷) → (𝐵 / (2↑𝐷)) ∈ ℝ*)
6256, 27nndivred 11107 . . . . . . . 8 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0𝐷 ∈ ℕ0)) ∧ 𝐶𝐷) → ((𝐵 + 1) / (2↑𝐷)) ∈ ℝ)
6362rexrd 10127 . . . . . . 7 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0𝐷 ∈ ℕ0)) ∧ 𝐶𝐷) → ((𝐵 + 1) / (2↑𝐷)) ∈ ℝ*)
6450rexrd 10127 . . . . . . 7 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0𝐷 ∈ ℕ0)) ∧ 𝐶𝐷) → (𝐴 / (2↑𝐶)) ∈ ℝ*)
65 peano2re 10247 . . . . . . . . . 10 (𝐴 ∈ ℝ → (𝐴 + 1) ∈ ℝ)
6620, 65syl 17 . . . . . . . . 9 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0𝐷 ∈ ℕ0)) ∧ 𝐶𝐷) → (𝐴 + 1) ∈ ℝ)
6766, 24nndivred 11107 . . . . . . . 8 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0𝐷 ∈ ℕ0)) ∧ 𝐶𝐷) → ((𝐴 + 1) / (2↑𝐶)) ∈ ℝ)
6867rexrd 10127 . . . . . . 7 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0𝐷 ∈ ℕ0)) ∧ 𝐶𝐷) → ((𝐴 + 1) / (2↑𝐶)) ∈ ℝ*)
69 ioodisj 12340 . . . . . . . 8 (((((𝐵 / (2↑𝐷)) ∈ ℝ* ∧ ((𝐵 + 1) / (2↑𝐷)) ∈ ℝ*) ∧ ((𝐴 / (2↑𝐶)) ∈ ℝ* ∧ ((𝐴 + 1) / (2↑𝐶)) ∈ ℝ*)) ∧ ((𝐵 + 1) / (2↑𝐷)) ≤ (𝐴 / (2↑𝐶))) → (((𝐵 / (2↑𝐷))(,)((𝐵 + 1) / (2↑𝐷))) ∩ ((𝐴 / (2↑𝐶))(,)((𝐴 + 1) / (2↑𝐶)))) = ∅)
7069ex 449 . . . . . . 7 ((((𝐵 / (2↑𝐷)) ∈ ℝ* ∧ ((𝐵 + 1) / (2↑𝐷)) ∈ ℝ*) ∧ ((𝐴 / (2↑𝐶)) ∈ ℝ* ∧ ((𝐴 + 1) / (2↑𝐶)) ∈ ℝ*)) → (((𝐵 + 1) / (2↑𝐷)) ≤ (𝐴 / (2↑𝐶)) → (((𝐵 / (2↑𝐷))(,)((𝐵 + 1) / (2↑𝐷))) ∩ ((𝐴 / (2↑𝐶))(,)((𝐴 + 1) / (2↑𝐶)))) = ∅))
7161, 63, 64, 68, 70syl22anc 1367 . . . . . 6 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0𝐷 ∈ ℕ0)) ∧ 𝐶𝐷) → (((𝐵 + 1) / (2↑𝐷)) ≤ (𝐴 / (2↑𝐶)) → (((𝐵 / (2↑𝐷))(,)((𝐵 + 1) / (2↑𝐷))) ∩ ((𝐴 / (2↑𝐶))(,)((𝐴 + 1) / (2↑𝐶)))) = ∅))
7259, 71sylbid 230 . . . . 5 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0𝐷 ∈ ℕ0)) ∧ 𝐶𝐷) → ((𝐵 / (2↑𝐷)) < (𝐴 / (2↑𝐶)) → (((𝐵 / (2↑𝐷))(,)((𝐵 + 1) / (2↑𝐷))) ∩ ((𝐴 / (2↑𝐶))(,)((𝐴 + 1) / (2↑𝐶)))) = ∅))
7372imp 444 . . . 4 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0𝐷 ∈ ℕ0)) ∧ 𝐶𝐷) ∧ (𝐵 / (2↑𝐷)) < (𝐴 / (2↑𝐶))) → (((𝐵 / (2↑𝐷))(,)((𝐵 + 1) / (2↑𝐷))) ∩ ((𝐴 / (2↑𝐶))(,)((𝐴 + 1) / (2↑𝐶)))) = ∅)
7419, 73eqtrd 2685 . . 3 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0𝐷 ∈ ℕ0)) ∧ 𝐶𝐷) ∧ (𝐵 / (2↑𝐷)) < (𝐴 / (2↑𝐶))) → (((,)‘(𝐴𝐹𝐶)) ∩ ((,)‘(𝐵𝐹𝐷))) = ∅)
75743mix3d 1258 . 2 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0𝐷 ∈ ℕ0)) ∧ 𝐶𝐷) ∧ (𝐵 / (2↑𝐷)) < (𝐴 / (2↑𝐶))) → (([,]‘(𝐴𝐹𝐶)) ⊆ ([,]‘(𝐵𝐹𝐷)) ∨ ([,]‘(𝐵𝐹𝐷)) ⊆ ([,]‘(𝐴𝐹𝐶)) ∨ (((,)‘(𝐴𝐹𝐶)) ∩ ((,)‘(𝐵𝐹𝐷))) = ∅))
7650adantr 480 . . . . . . 7 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0𝐷 ∈ ℕ0)) ∧ 𝐶𝐷) ∧ ((𝐴 / (2↑𝐶)) ≤ (𝐵 / (2↑𝐷)) ∧ (𝐵 / (2↑𝐷)) < ((𝐴 + 1) / (2↑𝐶)))) → (𝐴 / (2↑𝐶)) ∈ ℝ)
7767adantr 480 . . . . . . 7 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0𝐷 ∈ ℕ0)) ∧ 𝐶𝐷) ∧ ((𝐴 / (2↑𝐶)) ≤ (𝐵 / (2↑𝐷)) ∧ (𝐵 / (2↑𝐷)) < ((𝐴 + 1) / (2↑𝐶)))) → ((𝐴 + 1) / (2↑𝐶)) ∈ ℝ)
78 simprl 809 . . . . . . 7 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0𝐷 ∈ ℕ0)) ∧ 𝐶𝐷) ∧ ((𝐴 / (2↑𝐶)) ≤ (𝐵 / (2↑𝐷)) ∧ (𝐵 / (2↑𝐷)) < ((𝐴 + 1) / (2↑𝐶)))) → (𝐴 / (2↑𝐶)) ≤ (𝐵 / (2↑𝐷)))
7966recnd 10106 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0𝐷 ∈ ℕ0)) ∧ 𝐶𝐷) → (𝐴 + 1) ∈ ℂ)
8079, 25, 28, 29div13d 10863 . . . . . . . . . . . 12 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0𝐷 ∈ ℕ0)) ∧ 𝐶𝐷) → (((𝐴 + 1) / (2↑𝐶)) · (2↑𝐷)) = (((2↑𝐷) / (2↑𝐶)) · (𝐴 + 1)))
811peano2zd 11523 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0𝐷 ∈ ℕ0)) ∧ 𝐶𝐷) → (𝐴 + 1) ∈ ℤ)
8244, 81zmulcld 11526 . . . . . . . . . . . 12 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0𝐷 ∈ ℕ0)) ∧ 𝐶𝐷) → (((2↑𝐷) / (2↑𝐶)) · (𝐴 + 1)) ∈ ℤ)
8380, 82eqeltrd 2730 . . . . . . . . . . 11 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0𝐷 ∈ ℕ0)) ∧ 𝐶𝐷) → (((𝐴 + 1) / (2↑𝐶)) · (2↑𝐷)) ∈ ℤ)
84 zltp1le 11465 . . . . . . . . . . 11 ((𝐵 ∈ ℤ ∧ (((𝐴 + 1) / (2↑𝐶)) · (2↑𝐷)) ∈ ℤ) → (𝐵 < (((𝐴 + 1) / (2↑𝐶)) · (2↑𝐷)) ↔ (𝐵 + 1) ≤ (((𝐴 + 1) / (2↑𝐶)) · (2↑𝐷))))
859, 83, 84syl2anc 694 . . . . . . . . . 10 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0𝐷 ∈ ℕ0)) ∧ 𝐶𝐷) → (𝐵 < (((𝐴 + 1) / (2↑𝐶)) · (2↑𝐷)) ↔ (𝐵 + 1) ≤ (((𝐴 + 1) / (2↑𝐶)) · (2↑𝐷))))
86 ltdivmul2 10938 . . . . . . . . . . 11 ((𝐵 ∈ ℝ ∧ ((𝐴 + 1) / (2↑𝐶)) ∈ ℝ ∧ ((2↑𝐷) ∈ ℝ ∧ 0 < (2↑𝐷))) → ((𝐵 / (2↑𝐷)) < ((𝐴 + 1) / (2↑𝐶)) ↔ 𝐵 < (((𝐴 + 1) / (2↑𝐶)) · (2↑𝐷))))
8749, 67, 51, 52, 86syl112anc 1370 . . . . . . . . . 10 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0𝐷 ∈ ℕ0)) ∧ 𝐶𝐷) → ((𝐵 / (2↑𝐷)) < ((𝐴 + 1) / (2↑𝐶)) ↔ 𝐵 < (((𝐴 + 1) / (2↑𝐶)) · (2↑𝐷))))
88 ledivmul2 10940 . . . . . . . . . . 11 (((𝐵 + 1) ∈ ℝ ∧ ((𝐴 + 1) / (2↑𝐶)) ∈ ℝ ∧ ((2↑𝐷) ∈ ℝ ∧ 0 < (2↑𝐷))) → (((𝐵 + 1) / (2↑𝐷)) ≤ ((𝐴 + 1) / (2↑𝐶)) ↔ (𝐵 + 1) ≤ (((𝐴 + 1) / (2↑𝐶)) · (2↑𝐷))))
8956, 67, 51, 52, 88syl112anc 1370 . . . . . . . . . 10 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0𝐷 ∈ ℕ0)) ∧ 𝐶𝐷) → (((𝐵 + 1) / (2↑𝐷)) ≤ ((𝐴 + 1) / (2↑𝐶)) ↔ (𝐵 + 1) ≤ (((𝐴 + 1) / (2↑𝐶)) · (2↑𝐷))))
9085, 87, 893bitr4d 300 . . . . . . . . 9 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0𝐷 ∈ ℕ0)) ∧ 𝐶𝐷) → ((𝐵 / (2↑𝐷)) < ((𝐴 + 1) / (2↑𝐶)) ↔ ((𝐵 + 1) / (2↑𝐷)) ≤ ((𝐴 + 1) / (2↑𝐶))))
9190biimpa 500 . . . . . . . 8 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0𝐷 ∈ ℕ0)) ∧ 𝐶𝐷) ∧ (𝐵 / (2↑𝐷)) < ((𝐴 + 1) / (2↑𝐶))) → ((𝐵 + 1) / (2↑𝐷)) ≤ ((𝐴 + 1) / (2↑𝐶)))
9291adantrl 752 . . . . . . 7 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0𝐷 ∈ ℕ0)) ∧ 𝐶𝐷) ∧ ((𝐴 / (2↑𝐶)) ≤ (𝐵 / (2↑𝐷)) ∧ (𝐵 / (2↑𝐷)) < ((𝐴 + 1) / (2↑𝐶)))) → ((𝐵 + 1) / (2↑𝐷)) ≤ ((𝐴 + 1) / (2↑𝐶)))
93 iccss 12279 . . . . . . 7 ((((𝐴 / (2↑𝐶)) ∈ ℝ ∧ ((𝐴 + 1) / (2↑𝐶)) ∈ ℝ) ∧ ((𝐴 / (2↑𝐶)) ≤ (𝐵 / (2↑𝐷)) ∧ ((𝐵 + 1) / (2↑𝐷)) ≤ ((𝐴 + 1) / (2↑𝐶)))) → ((𝐵 / (2↑𝐷))[,]((𝐵 + 1) / (2↑𝐷))) ⊆ ((𝐴 / (2↑𝐶))[,]((𝐴 + 1) / (2↑𝐶))))
9476, 77, 78, 92, 93syl22anc 1367 . . . . . 6 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0𝐷 ∈ ℕ0)) ∧ 𝐶𝐷) ∧ ((𝐴 / (2↑𝐶)) ≤ (𝐵 / (2↑𝐷)) ∧ (𝐵 / (2↑𝐷)) < ((𝐴 + 1) / (2↑𝐶)))) → ((𝐵 / (2↑𝐷))[,]((𝐵 + 1) / (2↑𝐷))) ⊆ ((𝐴 / (2↑𝐶))[,]((𝐴 + 1) / (2↑𝐶))))
9512fveq2d 6233 . . . . . . . 8 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0𝐷 ∈ ℕ0)) ∧ 𝐶𝐷) → ([,]‘(𝐵𝐹𝐷)) = ([,]‘⟨(𝐵 / (2↑𝐷)), ((𝐵 + 1) / (2↑𝐷))⟩))
96 df-ov 6693 . . . . . . . 8 ((𝐵 / (2↑𝐷))[,]((𝐵 + 1) / (2↑𝐷))) = ([,]‘⟨(𝐵 / (2↑𝐷)), ((𝐵 + 1) / (2↑𝐷))⟩)
9795, 96syl6eqr 2703 . . . . . . 7 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0𝐷 ∈ ℕ0)) ∧ 𝐶𝐷) → ([,]‘(𝐵𝐹𝐷)) = ((𝐵 / (2↑𝐷))[,]((𝐵 + 1) / (2↑𝐷))))
9897adantr 480 . . . . . 6 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0𝐷 ∈ ℕ0)) ∧ 𝐶𝐷) ∧ ((𝐴 / (2↑𝐶)) ≤ (𝐵 / (2↑𝐷)) ∧ (𝐵 / (2↑𝐷)) < ((𝐴 + 1) / (2↑𝐶)))) → ([,]‘(𝐵𝐹𝐷)) = ((𝐵 / (2↑𝐷))[,]((𝐵 + 1) / (2↑𝐷))))
995fveq2d 6233 . . . . . . . 8 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0𝐷 ∈ ℕ0)) ∧ 𝐶𝐷) → ([,]‘(𝐴𝐹𝐶)) = ([,]‘⟨(𝐴 / (2↑𝐶)), ((𝐴 + 1) / (2↑𝐶))⟩))
100 df-ov 6693 . . . . . . . 8 ((𝐴 / (2↑𝐶))[,]((𝐴 + 1) / (2↑𝐶))) = ([,]‘⟨(𝐴 / (2↑𝐶)), ((𝐴 + 1) / (2↑𝐶))⟩)
10199, 100syl6eqr 2703 . . . . . . 7 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0𝐷 ∈ ℕ0)) ∧ 𝐶𝐷) → ([,]‘(𝐴𝐹𝐶)) = ((𝐴 / (2↑𝐶))[,]((𝐴 + 1) / (2↑𝐶))))
102101adantr 480 . . . . . 6 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0𝐷 ∈ ℕ0)) ∧ 𝐶𝐷) ∧ ((𝐴 / (2↑𝐶)) ≤ (𝐵 / (2↑𝐷)) ∧ (𝐵 / (2↑𝐷)) < ((𝐴 + 1) / (2↑𝐶)))) → ([,]‘(𝐴𝐹𝐶)) = ((𝐴 / (2↑𝐶))[,]((𝐴 + 1) / (2↑𝐶))))
10394, 98, 1023sstr4d 3681 . . . . 5 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0𝐷 ∈ ℕ0)) ∧ 𝐶𝐷) ∧ ((𝐴 / (2↑𝐶)) ≤ (𝐵 / (2↑𝐷)) ∧ (𝐵 / (2↑𝐷)) < ((𝐴 + 1) / (2↑𝐶)))) → ([,]‘(𝐵𝐹𝐷)) ⊆ ([,]‘(𝐴𝐹𝐶)))
1041033mix2d 1257 . . . 4 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0𝐷 ∈ ℕ0)) ∧ 𝐶𝐷) ∧ ((𝐴 / (2↑𝐶)) ≤ (𝐵 / (2↑𝐷)) ∧ (𝐵 / (2↑𝐷)) < ((𝐴 + 1) / (2↑𝐶)))) → (([,]‘(𝐴𝐹𝐶)) ⊆ ([,]‘(𝐵𝐹𝐷)) ∨ ([,]‘(𝐵𝐹𝐷)) ⊆ ([,]‘(𝐴𝐹𝐶)) ∨ (((,)‘(𝐴𝐹𝐶)) ∩ ((,)‘(𝐵𝐹𝐷))) = ∅))
105104anassrs 681 . . 3 ((((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0𝐷 ∈ ℕ0)) ∧ 𝐶𝐷) ∧ (𝐴 / (2↑𝐶)) ≤ (𝐵 / (2↑𝐷))) ∧ (𝐵 / (2↑𝐷)) < ((𝐴 + 1) / (2↑𝐶))) → (([,]‘(𝐴𝐹𝐶)) ⊆ ([,]‘(𝐵𝐹𝐷)) ∨ ([,]‘(𝐵𝐹𝐷)) ⊆ ([,]‘(𝐴𝐹𝐶)) ∨ (((,)‘(𝐴𝐹𝐶)) ∩ ((,)‘(𝐵𝐹𝐷))) = ∅))
10616adantr 480 . . . . . 6 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0𝐷 ∈ ℕ0)) ∧ 𝐶𝐷) ∧ ((𝐴 + 1) / (2↑𝐶)) ≤ (𝐵 / (2↑𝐷))) → (((,)‘(𝐴𝐹𝐶)) ∩ ((,)‘(𝐵𝐹𝐷))) = (((𝐴 / (2↑𝐶))(,)((𝐴 + 1) / (2↑𝐶))) ∩ ((𝐵 / (2↑𝐷))(,)((𝐵 + 1) / (2↑𝐷)))))
107 ioodisj 12340 . . . . . . . . 9 (((((𝐴 / (2↑𝐶)) ∈ ℝ* ∧ ((𝐴 + 1) / (2↑𝐶)) ∈ ℝ*) ∧ ((𝐵 / (2↑𝐷)) ∈ ℝ* ∧ ((𝐵 + 1) / (2↑𝐷)) ∈ ℝ*)) ∧ ((𝐴 + 1) / (2↑𝐶)) ≤ (𝐵 / (2↑𝐷))) → (((𝐴 / (2↑𝐶))(,)((𝐴 + 1) / (2↑𝐶))) ∩ ((𝐵 / (2↑𝐷))(,)((𝐵 + 1) / (2↑𝐷)))) = ∅)
108107ex 449 . . . . . . . 8 ((((𝐴 / (2↑𝐶)) ∈ ℝ* ∧ ((𝐴 + 1) / (2↑𝐶)) ∈ ℝ*) ∧ ((𝐵 / (2↑𝐷)) ∈ ℝ* ∧ ((𝐵 + 1) / (2↑𝐷)) ∈ ℝ*)) → (((𝐴 + 1) / (2↑𝐶)) ≤ (𝐵 / (2↑𝐷)) → (((𝐴 / (2↑𝐶))(,)((𝐴 + 1) / (2↑𝐶))) ∩ ((𝐵 / (2↑𝐷))(,)((𝐵 + 1) / (2↑𝐷)))) = ∅))
10964, 68, 61, 63, 108syl22anc 1367 . . . . . . 7 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0𝐷 ∈ ℕ0)) ∧ 𝐶𝐷) → (((𝐴 + 1) / (2↑𝐶)) ≤ (𝐵 / (2↑𝐷)) → (((𝐴 / (2↑𝐶))(,)((𝐴 + 1) / (2↑𝐶))) ∩ ((𝐵 / (2↑𝐷))(,)((𝐵 + 1) / (2↑𝐷)))) = ∅))
110109imp 444 . . . . . 6 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0𝐷 ∈ ℕ0)) ∧ 𝐶𝐷) ∧ ((𝐴 + 1) / (2↑𝐶)) ≤ (𝐵 / (2↑𝐷))) → (((𝐴 / (2↑𝐶))(,)((𝐴 + 1) / (2↑𝐶))) ∩ ((𝐵 / (2↑𝐷))(,)((𝐵 + 1) / (2↑𝐷)))) = ∅)
111106, 110eqtrd 2685 . . . . 5 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0𝐷 ∈ ℕ0)) ∧ 𝐶𝐷) ∧ ((𝐴 + 1) / (2↑𝐶)) ≤ (𝐵 / (2↑𝐷))) → (((,)‘(𝐴𝐹𝐶)) ∩ ((,)‘(𝐵𝐹𝐷))) = ∅)
1121113mix3d 1258 . . . 4 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0𝐷 ∈ ℕ0)) ∧ 𝐶𝐷) ∧ ((𝐴 + 1) / (2↑𝐶)) ≤ (𝐵 / (2↑𝐷))) → (([,]‘(𝐴𝐹𝐶)) ⊆ ([,]‘(𝐵𝐹𝐷)) ∨ ([,]‘(𝐵𝐹𝐷)) ⊆ ([,]‘(𝐴𝐹𝐶)) ∨ (((,)‘(𝐴𝐹𝐶)) ∩ ((,)‘(𝐵𝐹𝐷))) = ∅))
113112adantlr 751 . . 3 ((((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0𝐷 ∈ ℕ0)) ∧ 𝐶𝐷) ∧ (𝐴 / (2↑𝐶)) ≤ (𝐵 / (2↑𝐷))) ∧ ((𝐴 + 1) / (2↑𝐶)) ≤ (𝐵 / (2↑𝐷))) → (([,]‘(𝐴𝐹𝐶)) ⊆ ([,]‘(𝐵𝐹𝐷)) ∨ ([,]‘(𝐵𝐹𝐷)) ⊆ ([,]‘(𝐴𝐹𝐶)) ∨ (((,)‘(𝐴𝐹𝐶)) ∩ ((,)‘(𝐵𝐹𝐷))) = ∅))
11460adantr 480 . . 3 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0𝐷 ∈ ℕ0)) ∧ 𝐶𝐷) ∧ (𝐴 / (2↑𝐶)) ≤ (𝐵 / (2↑𝐷))) → (𝐵 / (2↑𝐷)) ∈ ℝ)
11567adantr 480 . . 3 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0𝐷 ∈ ℕ0)) ∧ 𝐶𝐷) ∧ (𝐴 / (2↑𝐶)) ≤ (𝐵 / (2↑𝐷))) → ((𝐴 + 1) / (2↑𝐶)) ∈ ℝ)
116105, 113, 114, 115ltlecasei 10183 . 2 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0𝐷 ∈ ℕ0)) ∧ 𝐶𝐷) ∧ (𝐴 / (2↑𝐶)) ≤ (𝐵 / (2↑𝐷))) → (([,]‘(𝐴𝐹𝐶)) ⊆ ([,]‘(𝐵𝐹𝐷)) ∨ ([,]‘(𝐵𝐹𝐷)) ⊆ ([,]‘(𝐴𝐹𝐶)) ∨ (((,)‘(𝐴𝐹𝐶)) ∩ ((,)‘(𝐵𝐹𝐷))) = ∅))
11775, 116, 60, 50ltlecasei 10183 1 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0𝐷 ∈ ℕ0)) ∧ 𝐶𝐷) → (([,]‘(𝐴𝐹𝐶)) ⊆ ([,]‘(𝐵𝐹𝐷)) ∨ ([,]‘(𝐵𝐹𝐷)) ⊆ ([,]‘(𝐴𝐹𝐶)) ∨ (((,)‘(𝐴𝐹𝐶)) ∩ ((,)‘(𝐵𝐹𝐷))) = ∅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383  w3o 1053   = wceq 1523  wcel 2030  wne 2823  cin 3606  wss 3607  c0 3948  cop 4216   class class class wbr 4685  cfv 5926  (class class class)co 6690  cmpt2 6692  cr 9973  0cc0 9974  1c1 9975   + caddc 9977   · cmul 9979  *cxr 10111   < clt 10112  cle 10113  cmin 10304   / cdiv 10722  cn 11058  2c2 11108  0cn0 11330  cz 11415  (,)cioo 12213  [,]cicc 12216  cexp 12900
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-om 7108  df-1st 7210  df-2nd 7211  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-er 7787  df-en 7998  df-dom 7999  df-sdom 8000  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-div 10723  df-nn 11059  df-2 11117  df-n0 11331  df-z 11416  df-uz 11726  df-ioo 12217  df-icc 12220  df-seq 12842  df-exp 12901
This theorem is referenced by:  dyaddisj  23410
  Copyright terms: Public domain W3C validator