![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > dya2iocbrsiga | Structured version Visualization version GIF version |
Description: Dyadic intervals are Borel sets of ℝ. (Contributed by Thierry Arnoux, 22-Sep-2017.) |
Ref | Expression |
---|---|
sxbrsiga.0 | ⊢ 𝐽 = (topGen‘ran (,)) |
dya2ioc.1 | ⊢ 𝐼 = (𝑥 ∈ ℤ, 𝑛 ∈ ℤ ↦ ((𝑥 / (2↑𝑛))[,)((𝑥 + 1) / (2↑𝑛)))) |
Ref | Expression |
---|---|
dya2iocbrsiga | ⊢ ((𝑁 ∈ ℤ ∧ 𝑋 ∈ ℤ) → (𝑋𝐼𝑁) ∈ 𝔅ℝ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sxbrsiga.0 | . . 3 ⊢ 𝐽 = (topGen‘ran (,)) | |
2 | dya2ioc.1 | . . 3 ⊢ 𝐼 = (𝑥 ∈ ℤ, 𝑛 ∈ ℤ ↦ ((𝑥 / (2↑𝑛))[,)((𝑥 + 1) / (2↑𝑛)))) | |
3 | 1, 2 | dya2iocival 30615 | . 2 ⊢ ((𝑁 ∈ ℤ ∧ 𝑋 ∈ ℤ) → (𝑋𝐼𝑁) = ((𝑋 / (2↑𝑁))[,)((𝑋 + 1) / (2↑𝑁)))) |
4 | mnfxr 10259 | . . . . 5 ⊢ -∞ ∈ ℝ* | |
5 | 4 | a1i 11 | . . . 4 ⊢ ((𝑁 ∈ ℤ ∧ 𝑋 ∈ ℤ) → -∞ ∈ ℝ*) |
6 | simpr 479 | . . . . . . 7 ⊢ ((𝑁 ∈ ℤ ∧ 𝑋 ∈ ℤ) → 𝑋 ∈ ℤ) | |
7 | 6 | zred 11645 | . . . . . 6 ⊢ ((𝑁 ∈ ℤ ∧ 𝑋 ∈ ℤ) → 𝑋 ∈ ℝ) |
8 | 2rp 12001 | . . . . . . . 8 ⊢ 2 ∈ ℝ+ | |
9 | 8 | a1i 11 | . . . . . . 7 ⊢ ((𝑁 ∈ ℤ ∧ 𝑋 ∈ ℤ) → 2 ∈ ℝ+) |
10 | simpl 474 | . . . . . . 7 ⊢ ((𝑁 ∈ ℤ ∧ 𝑋 ∈ ℤ) → 𝑁 ∈ ℤ) | |
11 | 9, 10 | rpexpcld 13197 | . . . . . 6 ⊢ ((𝑁 ∈ ℤ ∧ 𝑋 ∈ ℤ) → (2↑𝑁) ∈ ℝ+) |
12 | 7, 11 | rerpdivcld 12067 | . . . . 5 ⊢ ((𝑁 ∈ ℤ ∧ 𝑋 ∈ ℤ) → (𝑋 / (2↑𝑁)) ∈ ℝ) |
13 | 12 | rexrd 10252 | . . . 4 ⊢ ((𝑁 ∈ ℤ ∧ 𝑋 ∈ ℤ) → (𝑋 / (2↑𝑁)) ∈ ℝ*) |
14 | 1red 10218 | . . . . . . 7 ⊢ ((𝑁 ∈ ℤ ∧ 𝑋 ∈ ℤ) → 1 ∈ ℝ) | |
15 | 7, 14 | readdcld 10232 | . . . . . 6 ⊢ ((𝑁 ∈ ℤ ∧ 𝑋 ∈ ℤ) → (𝑋 + 1) ∈ ℝ) |
16 | 15, 11 | rerpdivcld 12067 | . . . . 5 ⊢ ((𝑁 ∈ ℤ ∧ 𝑋 ∈ ℤ) → ((𝑋 + 1) / (2↑𝑁)) ∈ ℝ) |
17 | 16 | rexrd 10252 | . . . 4 ⊢ ((𝑁 ∈ ℤ ∧ 𝑋 ∈ ℤ) → ((𝑋 + 1) / (2↑𝑁)) ∈ ℝ*) |
18 | mnflt 12121 | . . . . 5 ⊢ ((𝑋 / (2↑𝑁)) ∈ ℝ → -∞ < (𝑋 / (2↑𝑁))) | |
19 | 12, 18 | syl 17 | . . . 4 ⊢ ((𝑁 ∈ ℤ ∧ 𝑋 ∈ ℤ) → -∞ < (𝑋 / (2↑𝑁))) |
20 | difioo 29824 | . . . 4 ⊢ (((-∞ ∈ ℝ* ∧ (𝑋 / (2↑𝑁)) ∈ ℝ* ∧ ((𝑋 + 1) / (2↑𝑁)) ∈ ℝ*) ∧ -∞ < (𝑋 / (2↑𝑁))) → ((-∞(,)((𝑋 + 1) / (2↑𝑁))) ∖ (-∞(,)(𝑋 / (2↑𝑁)))) = ((𝑋 / (2↑𝑁))[,)((𝑋 + 1) / (2↑𝑁)))) | |
21 | 5, 13, 17, 19, 20 | syl31anc 1466 | . . 3 ⊢ ((𝑁 ∈ ℤ ∧ 𝑋 ∈ ℤ) → ((-∞(,)((𝑋 + 1) / (2↑𝑁))) ∖ (-∞(,)(𝑋 / (2↑𝑁)))) = ((𝑋 / (2↑𝑁))[,)((𝑋 + 1) / (2↑𝑁)))) |
22 | brsigarn 30527 | . . . . 5 ⊢ 𝔅ℝ ∈ (sigAlgebra‘ℝ) | |
23 | elrnsiga 30469 | . . . . 5 ⊢ (𝔅ℝ ∈ (sigAlgebra‘ℝ) → 𝔅ℝ ∈ ∪ ran sigAlgebra) | |
24 | 22, 23 | ax-mp 5 | . . . 4 ⊢ 𝔅ℝ ∈ ∪ ran sigAlgebra |
25 | retop 22737 | . . . . . 6 ⊢ (topGen‘ran (,)) ∈ Top | |
26 | iooretop 22741 | . . . . . 6 ⊢ (-∞(,)((𝑋 + 1) / (2↑𝑁))) ∈ (topGen‘ran (,)) | |
27 | elsigagen 30490 | . . . . . 6 ⊢ (((topGen‘ran (,)) ∈ Top ∧ (-∞(,)((𝑋 + 1) / (2↑𝑁))) ∈ (topGen‘ran (,))) → (-∞(,)((𝑋 + 1) / (2↑𝑁))) ∈ (sigaGen‘(topGen‘ran (,)))) | |
28 | 25, 26, 27 | mp2an 710 | . . . . 5 ⊢ (-∞(,)((𝑋 + 1) / (2↑𝑁))) ∈ (sigaGen‘(topGen‘ran (,))) |
29 | df-brsiga 30525 | . . . . 5 ⊢ 𝔅ℝ = (sigaGen‘(topGen‘ran (,))) | |
30 | 28, 29 | eleqtrri 2826 | . . . 4 ⊢ (-∞(,)((𝑋 + 1) / (2↑𝑁))) ∈ 𝔅ℝ |
31 | iooretop 22741 | . . . . . 6 ⊢ (-∞(,)(𝑋 / (2↑𝑁))) ∈ (topGen‘ran (,)) | |
32 | elsigagen 30490 | . . . . . 6 ⊢ (((topGen‘ran (,)) ∈ Top ∧ (-∞(,)(𝑋 / (2↑𝑁))) ∈ (topGen‘ran (,))) → (-∞(,)(𝑋 / (2↑𝑁))) ∈ (sigaGen‘(topGen‘ran (,)))) | |
33 | 25, 31, 32 | mp2an 710 | . . . . 5 ⊢ (-∞(,)(𝑋 / (2↑𝑁))) ∈ (sigaGen‘(topGen‘ran (,))) |
34 | 33, 29 | eleqtrri 2826 | . . . 4 ⊢ (-∞(,)(𝑋 / (2↑𝑁))) ∈ 𝔅ℝ |
35 | difelsiga 30476 | . . . 4 ⊢ ((𝔅ℝ ∈ ∪ ran sigAlgebra ∧ (-∞(,)((𝑋 + 1) / (2↑𝑁))) ∈ 𝔅ℝ ∧ (-∞(,)(𝑋 / (2↑𝑁))) ∈ 𝔅ℝ) → ((-∞(,)((𝑋 + 1) / (2↑𝑁))) ∖ (-∞(,)(𝑋 / (2↑𝑁)))) ∈ 𝔅ℝ) | |
36 | 24, 30, 34, 35 | mp3an 1561 | . . 3 ⊢ ((-∞(,)((𝑋 + 1) / (2↑𝑁))) ∖ (-∞(,)(𝑋 / (2↑𝑁)))) ∈ 𝔅ℝ |
37 | 21, 36 | syl6eqelr 2836 | . 2 ⊢ ((𝑁 ∈ ℤ ∧ 𝑋 ∈ ℤ) → ((𝑋 / (2↑𝑁))[,)((𝑋 + 1) / (2↑𝑁))) ∈ 𝔅ℝ) |
38 | 3, 37 | eqeltrd 2827 | 1 ⊢ ((𝑁 ∈ ℤ ∧ 𝑋 ∈ ℤ) → (𝑋𝐼𝑁) ∈ 𝔅ℝ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 = wceq 1620 ∈ wcel 2127 ∖ cdif 3700 ∪ cuni 4576 class class class wbr 4792 ran crn 5255 ‘cfv 6037 (class class class)co 6801 ↦ cmpt2 6803 ℝcr 10098 1c1 10100 + caddc 10102 -∞cmnf 10235 ℝ*cxr 10236 < clt 10237 / cdiv 10847 2c2 11233 ℤcz 11540 ℝ+crp 11996 (,)cioo 12339 [,)cico 12341 ↑cexp 13025 topGenctg 16271 Topctop 20871 sigAlgebracsiga 30450 sigaGencsigagen 30481 𝔅ℝcbrsiga 30524 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1859 ax-4 1874 ax-5 1976 ax-6 2042 ax-7 2078 ax-8 2129 ax-9 2136 ax-10 2156 ax-11 2171 ax-12 2184 ax-13 2379 ax-ext 2728 ax-rep 4911 ax-sep 4921 ax-nul 4929 ax-pow 4980 ax-pr 5043 ax-un 7102 ax-inf2 8699 ax-ac2 9448 ax-cnex 10155 ax-resscn 10156 ax-1cn 10157 ax-icn 10158 ax-addcl 10159 ax-addrcl 10160 ax-mulcl 10161 ax-mulrcl 10162 ax-mulcom 10163 ax-addass 10164 ax-mulass 10165 ax-distr 10166 ax-i2m1 10167 ax-1ne0 10168 ax-1rid 10169 ax-rnegex 10170 ax-rrecex 10171 ax-cnre 10172 ax-pre-lttri 10173 ax-pre-lttrn 10174 ax-pre-ltadd 10175 ax-pre-mulgt0 10176 ax-pre-sup 10177 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1623 df-fal 1626 df-ex 1842 df-nf 1847 df-sb 2035 df-eu 2599 df-mo 2600 df-clab 2735 df-cleq 2741 df-clel 2744 df-nfc 2879 df-ne 2921 df-nel 3024 df-ral 3043 df-rex 3044 df-reu 3045 df-rmo 3046 df-rab 3047 df-v 3330 df-sbc 3565 df-csb 3663 df-dif 3706 df-un 3708 df-in 3710 df-ss 3717 df-pss 3719 df-nul 4047 df-if 4219 df-pw 4292 df-sn 4310 df-pr 4312 df-tp 4314 df-op 4316 df-uni 4577 df-int 4616 df-iun 4662 df-iin 4663 df-br 4793 df-opab 4853 df-mpt 4870 df-tr 4893 df-id 5162 df-eprel 5167 df-po 5175 df-so 5176 df-fr 5213 df-se 5214 df-we 5215 df-xp 5260 df-rel 5261 df-cnv 5262 df-co 5263 df-dm 5264 df-rn 5265 df-res 5266 df-ima 5267 df-pred 5829 df-ord 5875 df-on 5876 df-lim 5877 df-suc 5878 df-iota 6000 df-fun 6039 df-fn 6040 df-f 6041 df-f1 6042 df-fo 6043 df-f1o 6044 df-fv 6045 df-isom 6046 df-riota 6762 df-ov 6804 df-oprab 6805 df-mpt2 6806 df-om 7219 df-1st 7321 df-2nd 7322 df-wrecs 7564 df-recs 7625 df-rdg 7663 df-1o 7717 df-2o 7718 df-oadd 7721 df-er 7899 df-map 8013 df-en 8110 df-dom 8111 df-sdom 8112 df-fin 8113 df-sup 8501 df-inf 8502 df-oi 8568 df-card 8926 df-acn 8929 df-ac 9100 df-cda 9153 df-pnf 10239 df-mnf 10240 df-xr 10241 df-ltxr 10242 df-le 10243 df-sub 10431 df-neg 10432 df-div 10848 df-nn 11184 df-2 11242 df-n0 11456 df-z 11541 df-uz 11851 df-q 11953 df-rp 11997 df-ioo 12343 df-ico 12345 df-seq 12967 df-exp 13026 df-topgen 16277 df-top 20872 df-bases 20923 df-siga 30451 df-sigagen 30482 df-brsiga 30525 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |