![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dvsqrt | Structured version Visualization version GIF version |
Description: The derivative of the real square root function. (Contributed by Mario Carneiro, 1-May-2016.) |
Ref | Expression |
---|---|
dvsqrt | ⊢ (ℝ D (𝑥 ∈ ℝ+ ↦ (√‘𝑥))) = (𝑥 ∈ ℝ+ ↦ (1 / (2 · (√‘𝑥)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | halfcn 11448 | . . 3 ⊢ (1 / 2) ∈ ℂ | |
2 | dvcxp1 24701 | . . 3 ⊢ ((1 / 2) ∈ ℂ → (ℝ D (𝑥 ∈ ℝ+ ↦ (𝑥↑𝑐(1 / 2)))) = (𝑥 ∈ ℝ+ ↦ ((1 / 2) · (𝑥↑𝑐((1 / 2) − 1))))) | |
3 | 1, 2 | ax-mp 5 | . 2 ⊢ (ℝ D (𝑥 ∈ ℝ+ ↦ (𝑥↑𝑐(1 / 2)))) = (𝑥 ∈ ℝ+ ↦ ((1 / 2) · (𝑥↑𝑐((1 / 2) − 1)))) |
4 | rpcn 12043 | . . . . 5 ⊢ (𝑥 ∈ ℝ+ → 𝑥 ∈ ℂ) | |
5 | cxpsqrt 24669 | . . . . 5 ⊢ (𝑥 ∈ ℂ → (𝑥↑𝑐(1 / 2)) = (√‘𝑥)) | |
6 | 4, 5 | syl 17 | . . . 4 ⊢ (𝑥 ∈ ℝ+ → (𝑥↑𝑐(1 / 2)) = (√‘𝑥)) |
7 | 6 | mpteq2ia 4872 | . . 3 ⊢ (𝑥 ∈ ℝ+ ↦ (𝑥↑𝑐(1 / 2))) = (𝑥 ∈ ℝ+ ↦ (√‘𝑥)) |
8 | 7 | oveq2i 6803 | . 2 ⊢ (ℝ D (𝑥 ∈ ℝ+ ↦ (𝑥↑𝑐(1 / 2)))) = (ℝ D (𝑥 ∈ ℝ+ ↦ (√‘𝑥))) |
9 | 1p0e1 11334 | . . . . . . . . . . 11 ⊢ (1 + 0) = 1 | |
10 | ax-1cn 10195 | . . . . . . . . . . . 12 ⊢ 1 ∈ ℂ | |
11 | 2halves 11461 | . . . . . . . . . . . 12 ⊢ (1 ∈ ℂ → ((1 / 2) + (1 / 2)) = 1) | |
12 | 10, 11 | ax-mp 5 | . . . . . . . . . . 11 ⊢ ((1 / 2) + (1 / 2)) = 1 |
13 | 9, 12 | eqtr4i 2795 | . . . . . . . . . 10 ⊢ (1 + 0) = ((1 / 2) + (1 / 2)) |
14 | 0cn 10233 | . . . . . . . . . . 11 ⊢ 0 ∈ ℂ | |
15 | addsubeq4 10497 | . . . . . . . . . . 11 ⊢ (((1 ∈ ℂ ∧ 0 ∈ ℂ) ∧ ((1 / 2) ∈ ℂ ∧ (1 / 2) ∈ ℂ)) → ((1 + 0) = ((1 / 2) + (1 / 2)) ↔ ((1 / 2) − 1) = (0 − (1 / 2)))) | |
16 | 10, 14, 1, 1, 15 | mp4an 665 | . . . . . . . . . 10 ⊢ ((1 + 0) = ((1 / 2) + (1 / 2)) ↔ ((1 / 2) − 1) = (0 − (1 / 2))) |
17 | 13, 16 | mpbi 220 | . . . . . . . . 9 ⊢ ((1 / 2) − 1) = (0 − (1 / 2)) |
18 | df-neg 10470 | . . . . . . . . 9 ⊢ -(1 / 2) = (0 − (1 / 2)) | |
19 | 17, 18 | eqtr4i 2795 | . . . . . . . 8 ⊢ ((1 / 2) − 1) = -(1 / 2) |
20 | 19 | oveq2i 6803 | . . . . . . 7 ⊢ (𝑥↑𝑐((1 / 2) − 1)) = (𝑥↑𝑐-(1 / 2)) |
21 | rpne0 12050 | . . . . . . . 8 ⊢ (𝑥 ∈ ℝ+ → 𝑥 ≠ 0) | |
22 | 1 | a1i 11 | . . . . . . . 8 ⊢ (𝑥 ∈ ℝ+ → (1 / 2) ∈ ℂ) |
23 | 4, 21, 22 | cxpnegd 24681 | . . . . . . 7 ⊢ (𝑥 ∈ ℝ+ → (𝑥↑𝑐-(1 / 2)) = (1 / (𝑥↑𝑐(1 / 2)))) |
24 | 20, 23 | syl5eq 2816 | . . . . . 6 ⊢ (𝑥 ∈ ℝ+ → (𝑥↑𝑐((1 / 2) − 1)) = (1 / (𝑥↑𝑐(1 / 2)))) |
25 | 6 | oveq2d 6808 | . . . . . 6 ⊢ (𝑥 ∈ ℝ+ → (1 / (𝑥↑𝑐(1 / 2))) = (1 / (√‘𝑥))) |
26 | 24, 25 | eqtrd 2804 | . . . . 5 ⊢ (𝑥 ∈ ℝ+ → (𝑥↑𝑐((1 / 2) − 1)) = (1 / (√‘𝑥))) |
27 | 26 | oveq2d 6808 | . . . 4 ⊢ (𝑥 ∈ ℝ+ → ((1 / 2) · (𝑥↑𝑐((1 / 2) − 1))) = ((1 / 2) · (1 / (√‘𝑥)))) |
28 | 10 | a1i 11 | . . . . . 6 ⊢ (𝑥 ∈ ℝ+ → 1 ∈ ℂ) |
29 | 2cnne0 11443 | . . . . . . 7 ⊢ (2 ∈ ℂ ∧ 2 ≠ 0) | |
30 | 29 | a1i 11 | . . . . . 6 ⊢ (𝑥 ∈ ℝ+ → (2 ∈ ℂ ∧ 2 ≠ 0)) |
31 | rpsqrtcl 14212 | . . . . . . 7 ⊢ (𝑥 ∈ ℝ+ → (√‘𝑥) ∈ ℝ+) | |
32 | 31 | rpcnne0d 12083 | . . . . . 6 ⊢ (𝑥 ∈ ℝ+ → ((√‘𝑥) ∈ ℂ ∧ (√‘𝑥) ≠ 0)) |
33 | divmuldiv 10926 | . . . . . 6 ⊢ (((1 ∈ ℂ ∧ 1 ∈ ℂ) ∧ ((2 ∈ ℂ ∧ 2 ≠ 0) ∧ ((√‘𝑥) ∈ ℂ ∧ (√‘𝑥) ≠ 0))) → ((1 / 2) · (1 / (√‘𝑥))) = ((1 · 1) / (2 · (√‘𝑥)))) | |
34 | 28, 28, 30, 32, 33 | syl22anc 1476 | . . . . 5 ⊢ (𝑥 ∈ ℝ+ → ((1 / 2) · (1 / (√‘𝑥))) = ((1 · 1) / (2 · (√‘𝑥)))) |
35 | 1t1e1 11376 | . . . . . 6 ⊢ (1 · 1) = 1 | |
36 | 35 | oveq1i 6802 | . . . . 5 ⊢ ((1 · 1) / (2 · (√‘𝑥))) = (1 / (2 · (√‘𝑥))) |
37 | 34, 36 | syl6eq 2820 | . . . 4 ⊢ (𝑥 ∈ ℝ+ → ((1 / 2) · (1 / (√‘𝑥))) = (1 / (2 · (√‘𝑥)))) |
38 | 27, 37 | eqtrd 2804 | . . 3 ⊢ (𝑥 ∈ ℝ+ → ((1 / 2) · (𝑥↑𝑐((1 / 2) − 1))) = (1 / (2 · (√‘𝑥)))) |
39 | 38 | mpteq2ia 4872 | . 2 ⊢ (𝑥 ∈ ℝ+ ↦ ((1 / 2) · (𝑥↑𝑐((1 / 2) − 1)))) = (𝑥 ∈ ℝ+ ↦ (1 / (2 · (√‘𝑥)))) |
40 | 3, 8, 39 | 3eqtr3i 2800 | 1 ⊢ (ℝ D (𝑥 ∈ ℝ+ ↦ (√‘𝑥))) = (𝑥 ∈ ℝ+ ↦ (1 / (2 · (√‘𝑥)))) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 196 ∧ wa 382 = wceq 1630 ∈ wcel 2144 ≠ wne 2942 ↦ cmpt 4861 ‘cfv 6031 (class class class)co 6792 ℂcc 10135 ℝcr 10136 0cc0 10137 1c1 10138 + caddc 10140 · cmul 10142 − cmin 10467 -cneg 10468 / cdiv 10885 2c2 11271 ℝ+crp 12034 √csqrt 14180 D cdv 23846 ↑𝑐ccxp 24522 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1869 ax-4 1884 ax-5 1990 ax-6 2056 ax-7 2092 ax-8 2146 ax-9 2153 ax-10 2173 ax-11 2189 ax-12 2202 ax-13 2407 ax-ext 2750 ax-rep 4902 ax-sep 4912 ax-nul 4920 ax-pow 4971 ax-pr 5034 ax-un 7095 ax-inf2 8701 ax-cnex 10193 ax-resscn 10194 ax-1cn 10195 ax-icn 10196 ax-addcl 10197 ax-addrcl 10198 ax-mulcl 10199 ax-mulrcl 10200 ax-mulcom 10201 ax-addass 10202 ax-mulass 10203 ax-distr 10204 ax-i2m1 10205 ax-1ne0 10206 ax-1rid 10207 ax-rnegex 10208 ax-rrecex 10209 ax-cnre 10210 ax-pre-lttri 10211 ax-pre-lttrn 10212 ax-pre-ltadd 10213 ax-pre-mulgt0 10214 ax-pre-sup 10215 ax-addf 10216 ax-mulf 10217 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 827 df-3or 1071 df-3an 1072 df-tru 1633 df-fal 1636 df-ex 1852 df-nf 1857 df-sb 2049 df-eu 2621 df-mo 2622 df-clab 2757 df-cleq 2763 df-clel 2766 df-nfc 2901 df-ne 2943 df-nel 3046 df-ral 3065 df-rex 3066 df-reu 3067 df-rmo 3068 df-rab 3069 df-v 3351 df-sbc 3586 df-csb 3681 df-dif 3724 df-un 3726 df-in 3728 df-ss 3735 df-pss 3737 df-nul 4062 df-if 4224 df-pw 4297 df-sn 4315 df-pr 4317 df-tp 4319 df-op 4321 df-uni 4573 df-int 4610 df-iun 4654 df-iin 4655 df-br 4785 df-opab 4845 df-mpt 4862 df-tr 4885 df-id 5157 df-eprel 5162 df-po 5170 df-so 5171 df-fr 5208 df-se 5209 df-we 5210 df-xp 5255 df-rel 5256 df-cnv 5257 df-co 5258 df-dm 5259 df-rn 5260 df-res 5261 df-ima 5262 df-pred 5823 df-ord 5869 df-on 5870 df-lim 5871 df-suc 5872 df-iota 5994 df-fun 6033 df-fn 6034 df-f 6035 df-f1 6036 df-fo 6037 df-f1o 6038 df-fv 6039 df-isom 6040 df-riota 6753 df-ov 6795 df-oprab 6796 df-mpt2 6797 df-of 7043 df-om 7212 df-1st 7314 df-2nd 7315 df-supp 7446 df-wrecs 7558 df-recs 7620 df-rdg 7658 df-1o 7712 df-2o 7713 df-oadd 7716 df-er 7895 df-map 8010 df-pm 8011 df-ixp 8062 df-en 8109 df-dom 8110 df-sdom 8111 df-fin 8112 df-fsupp 8431 df-fi 8472 df-sup 8503 df-inf 8504 df-oi 8570 df-card 8964 df-cda 9191 df-pnf 10277 df-mnf 10278 df-xr 10279 df-ltxr 10280 df-le 10281 df-sub 10469 df-neg 10470 df-div 10886 df-nn 11222 df-2 11280 df-3 11281 df-4 11282 df-5 11283 df-6 11284 df-7 11285 df-8 11286 df-9 11287 df-n0 11494 df-z 11579 df-dec 11695 df-uz 11888 df-q 11991 df-rp 12035 df-xneg 12150 df-xadd 12151 df-xmul 12152 df-ioo 12383 df-ioc 12384 df-ico 12385 df-icc 12386 df-fz 12533 df-fzo 12673 df-fl 12800 df-mod 12876 df-seq 13008 df-exp 13067 df-fac 13264 df-bc 13293 df-hash 13321 df-shft 14014 df-cj 14046 df-re 14047 df-im 14048 df-sqrt 14182 df-abs 14183 df-limsup 14409 df-clim 14426 df-rlim 14427 df-sum 14624 df-ef 15003 df-sin 15005 df-cos 15006 df-pi 15008 df-struct 16065 df-ndx 16066 df-slot 16067 df-base 16069 df-sets 16070 df-ress 16071 df-plusg 16161 df-mulr 16162 df-starv 16163 df-sca 16164 df-vsca 16165 df-ip 16166 df-tset 16167 df-ple 16168 df-ds 16171 df-unif 16172 df-hom 16173 df-cco 16174 df-rest 16290 df-topn 16291 df-0g 16309 df-gsum 16310 df-topgen 16311 df-pt 16312 df-prds 16315 df-xrs 16369 df-qtop 16374 df-imas 16375 df-xps 16377 df-mre 16453 df-mrc 16454 df-acs 16456 df-mgm 17449 df-sgrp 17491 df-mnd 17502 df-submnd 17543 df-mulg 17748 df-cntz 17956 df-cmn 18401 df-psmet 19952 df-xmet 19953 df-met 19954 df-bl 19955 df-mopn 19956 df-fbas 19957 df-fg 19958 df-cnfld 19961 df-top 20918 df-topon 20935 df-topsp 20957 df-bases 20970 df-cld 21043 df-ntr 21044 df-cls 21045 df-nei 21122 df-lp 21160 df-perf 21161 df-cn 21251 df-cnp 21252 df-haus 21339 df-cmp 21410 df-tx 21585 df-hmeo 21778 df-fil 21869 df-fm 21961 df-flim 21962 df-flf 21963 df-xms 22344 df-ms 22345 df-tms 22346 df-cncf 22900 df-limc 23849 df-dv 23850 df-log 24523 df-cxp 24524 |
This theorem is referenced by: loglesqrt 24719 divsqrtsumlem 24926 areacirclem1 33825 |
Copyright terms: Public domain | W3C validator |