![]() |
Mathbox for Jeff Madsen |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > dvrunz | Structured version Visualization version GIF version |
Description: In a division ring the unit is different from the zero. (Contributed by FL, 14-Feb-2010.) (Revised by Mario Carneiro, 15-Dec-2013.) (New usage is discouraged.) |
Ref | Expression |
---|---|
dvrunz.1 | ⊢ 𝐺 = (1st ‘𝑅) |
dvrunz.2 | ⊢ 𝐻 = (2nd ‘𝑅) |
dvrunz.3 | ⊢ 𝑋 = ran 𝐺 |
dvrunz.4 | ⊢ 𝑍 = (GId‘𝐺) |
dvrunz.5 | ⊢ 𝑈 = (GId‘𝐻) |
Ref | Expression |
---|---|
dvrunz | ⊢ (𝑅 ∈ DivRingOps → 𝑈 ≠ 𝑍) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dvrunz.4 | . . . 4 ⊢ 𝑍 = (GId‘𝐺) | |
2 | fvex 6239 | . . . 4 ⊢ (GId‘𝐺) ∈ V | |
3 | 1, 2 | eqeltri 2726 | . . 3 ⊢ 𝑍 ∈ V |
4 | 3 | zrdivrng 33882 | . 2 ⊢ ¬ 〈{〈〈𝑍, 𝑍〉, 𝑍〉}, {〈〈𝑍, 𝑍〉, 𝑍〉}〉 ∈ DivRingOps |
5 | dvrunz.1 | . . . . . . 7 ⊢ 𝐺 = (1st ‘𝑅) | |
6 | dvrunz.2 | . . . . . . 7 ⊢ 𝐻 = (2nd ‘𝑅) | |
7 | dvrunz.3 | . . . . . . 7 ⊢ 𝑋 = ran 𝐺 | |
8 | 5, 6, 7, 1 | drngoi 33880 | . . . . . 6 ⊢ (𝑅 ∈ DivRingOps → (𝑅 ∈ RingOps ∧ (𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))) ∈ GrpOp)) |
9 | 8 | simpld 474 | . . . . 5 ⊢ (𝑅 ∈ DivRingOps → 𝑅 ∈ RingOps) |
10 | dvrunz.5 | . . . . . 6 ⊢ 𝑈 = (GId‘𝐻) | |
11 | 5, 6, 1, 10, 7 | rngoueqz 33869 | . . . . 5 ⊢ (𝑅 ∈ RingOps → (𝑋 ≈ 1𝑜 ↔ 𝑈 = 𝑍)) |
12 | 9, 11 | syl 17 | . . . 4 ⊢ (𝑅 ∈ DivRingOps → (𝑋 ≈ 1𝑜 ↔ 𝑈 = 𝑍)) |
13 | 5, 7, 1 | rngosn6 33855 | . . . . . . 7 ⊢ (𝑅 ∈ RingOps → (𝑋 ≈ 1𝑜 ↔ 𝑅 = 〈{〈〈𝑍, 𝑍〉, 𝑍〉}, {〈〈𝑍, 𝑍〉, 𝑍〉}〉)) |
14 | 9, 13 | syl 17 | . . . . . 6 ⊢ (𝑅 ∈ DivRingOps → (𝑋 ≈ 1𝑜 ↔ 𝑅 = 〈{〈〈𝑍, 𝑍〉, 𝑍〉}, {〈〈𝑍, 𝑍〉, 𝑍〉}〉)) |
15 | eleq1 2718 | . . . . . . 7 ⊢ (𝑅 = 〈{〈〈𝑍, 𝑍〉, 𝑍〉}, {〈〈𝑍, 𝑍〉, 𝑍〉}〉 → (𝑅 ∈ DivRingOps ↔ 〈{〈〈𝑍, 𝑍〉, 𝑍〉}, {〈〈𝑍, 𝑍〉, 𝑍〉}〉 ∈ DivRingOps)) | |
16 | 15 | biimpd 219 | . . . . . 6 ⊢ (𝑅 = 〈{〈〈𝑍, 𝑍〉, 𝑍〉}, {〈〈𝑍, 𝑍〉, 𝑍〉}〉 → (𝑅 ∈ DivRingOps → 〈{〈〈𝑍, 𝑍〉, 𝑍〉}, {〈〈𝑍, 𝑍〉, 𝑍〉}〉 ∈ DivRingOps)) |
17 | 14, 16 | syl6bi 243 | . . . . 5 ⊢ (𝑅 ∈ DivRingOps → (𝑋 ≈ 1𝑜 → (𝑅 ∈ DivRingOps → 〈{〈〈𝑍, 𝑍〉, 𝑍〉}, {〈〈𝑍, 𝑍〉, 𝑍〉}〉 ∈ DivRingOps))) |
18 | 17 | pm2.43a 54 | . . . 4 ⊢ (𝑅 ∈ DivRingOps → (𝑋 ≈ 1𝑜 → 〈{〈〈𝑍, 𝑍〉, 𝑍〉}, {〈〈𝑍, 𝑍〉, 𝑍〉}〉 ∈ DivRingOps)) |
19 | 12, 18 | sylbird 250 | . . 3 ⊢ (𝑅 ∈ DivRingOps → (𝑈 = 𝑍 → 〈{〈〈𝑍, 𝑍〉, 𝑍〉}, {〈〈𝑍, 𝑍〉, 𝑍〉}〉 ∈ DivRingOps)) |
20 | 19 | necon3bd 2837 | . 2 ⊢ (𝑅 ∈ DivRingOps → (¬ 〈{〈〈𝑍, 𝑍〉, 𝑍〉}, {〈〈𝑍, 𝑍〉, 𝑍〉}〉 ∈ DivRingOps → 𝑈 ≠ 𝑍)) |
21 | 4, 20 | mpi 20 | 1 ⊢ (𝑅 ∈ DivRingOps → 𝑈 ≠ 𝑍) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 196 = wceq 1523 ∈ wcel 2030 ≠ wne 2823 Vcvv 3231 ∖ cdif 3604 {csn 4210 〈cop 4216 class class class wbr 4685 × cxp 5141 ran crn 5144 ↾ cres 5145 ‘cfv 5926 1st c1st 7208 2nd c2nd 7209 1𝑜c1o 7598 ≈ cen 7994 GrpOpcgr 27471 GIdcgi 27472 RingOpscrngo 33823 DivRingOpscdrng 33877 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-8 2032 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-rep 4804 ax-sep 4814 ax-nul 4822 ax-pow 4873 ax-pr 4936 ax-un 6991 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1055 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-mo 2503 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ne 2824 df-ral 2946 df-rex 2947 df-reu 2948 df-rmo 2949 df-rab 2950 df-v 3233 df-sbc 3469 df-csb 3567 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-pss 3623 df-nul 3949 df-if 4120 df-pw 4193 df-sn 4211 df-pr 4213 df-tp 4215 df-op 4217 df-uni 4469 df-iun 4554 df-br 4686 df-opab 4746 df-mpt 4763 df-tr 4786 df-id 5053 df-eprel 5058 df-po 5064 df-so 5065 df-fr 5102 df-we 5104 df-xp 5149 df-rel 5150 df-cnv 5151 df-co 5152 df-dm 5153 df-rn 5154 df-res 5155 df-ima 5156 df-ord 5764 df-on 5765 df-lim 5766 df-suc 5767 df-iota 5889 df-fun 5928 df-fn 5929 df-f 5930 df-f1 5931 df-fo 5932 df-f1o 5933 df-fv 5934 df-riota 6651 df-ov 6693 df-om 7108 df-1st 7210 df-2nd 7211 df-1o 7605 df-er 7787 df-en 7998 df-dom 7999 df-sdom 8000 df-fin 8001 df-grpo 27475 df-gid 27476 df-ablo 27527 df-ass 33772 df-exid 33774 df-mgmOLD 33778 df-sgrOLD 33790 df-mndo 33796 df-rngo 33824 df-drngo 33878 |
This theorem is referenced by: isdrngo2 33887 divrngpr 33982 isfldidl 33997 |
Copyright terms: Public domain | W3C validator |