MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvres2lem Structured version   Visualization version   GIF version

Theorem dvres2lem 23873
Description: Lemma for dvres2 23875. (Contributed by Mario Carneiro, 9-Feb-2015.) (Revised by Mario Carneiro, 28-Dec-2016.)
Hypotheses
Ref Expression
dvres.k 𝐾 = (TopOpen‘ℂfld)
dvres.t 𝑇 = (𝐾t 𝑆)
dvres.g 𝐺 = (𝑧 ∈ (𝐴 ∖ {𝑥}) ↦ (((𝐹𝑧) − (𝐹𝑥)) / (𝑧𝑥)))
dvres.s (𝜑𝑆 ⊆ ℂ)
dvres.f (𝜑𝐹:𝐴⟶ℂ)
dvres.a (𝜑𝐴𝑆)
dvres.b (𝜑𝐵𝑆)
dvres.y (𝜑𝑦 ∈ ℂ)
dvres2lem.d (𝜑𝑥(𝑆 D 𝐹)𝑦)
dvres2lem.x (𝜑𝑥𝐵)
Assertion
Ref Expression
dvres2lem (𝜑𝑥(𝐵 D (𝐹𝐵))𝑦)
Distinct variable groups:   𝑥,𝑦,𝑧,𝐴   𝑥,𝐵,𝑦,𝑧   𝑥,𝐹,𝑦,𝑧   𝑥,𝑆,𝑦,𝑧   𝑥,𝑇,𝑦,𝑧   𝑧,𝐾   𝜑,𝑧
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝐺(𝑥,𝑦,𝑧)   𝐾(𝑥,𝑦)

Proof of Theorem dvres2lem
StepHypRef Expression
1 dvres.t . . . . . . 7 𝑇 = (𝐾t 𝑆)
2 dvres.k . . . . . . . . 9 𝐾 = (TopOpen‘ℂfld)
32cnfldtop 22788 . . . . . . . 8 𝐾 ∈ Top
4 dvres.s . . . . . . . . 9 (𝜑𝑆 ⊆ ℂ)
5 cnex 10209 . . . . . . . . 9 ℂ ∈ V
6 ssexg 4956 . . . . . . . . 9 ((𝑆 ⊆ ℂ ∧ ℂ ∈ V) → 𝑆 ∈ V)
74, 5, 6sylancl 697 . . . . . . . 8 (𝜑𝑆 ∈ V)
8 resttop 21166 . . . . . . . 8 ((𝐾 ∈ Top ∧ 𝑆 ∈ V) → (𝐾t 𝑆) ∈ Top)
93, 7, 8sylancr 698 . . . . . . 7 (𝜑 → (𝐾t 𝑆) ∈ Top)
101, 9syl5eqel 2843 . . . . . 6 (𝜑𝑇 ∈ Top)
11 inss1 3976 . . . . . . . . 9 (𝐴𝐵) ⊆ 𝐴
12 dvres.a . . . . . . . . 9 (𝜑𝐴𝑆)
1311, 12syl5ss 3755 . . . . . . . 8 (𝜑 → (𝐴𝐵) ⊆ 𝑆)
142cnfldtopon 22787 . . . . . . . . . . 11 𝐾 ∈ (TopOn‘ℂ)
15 resttopon 21167 . . . . . . . . . . 11 ((𝐾 ∈ (TopOn‘ℂ) ∧ 𝑆 ⊆ ℂ) → (𝐾t 𝑆) ∈ (TopOn‘𝑆))
1614, 4, 15sylancr 698 . . . . . . . . . 10 (𝜑 → (𝐾t 𝑆) ∈ (TopOn‘𝑆))
171, 16syl5eqel 2843 . . . . . . . . 9 (𝜑𝑇 ∈ (TopOn‘𝑆))
18 toponuni 20921 . . . . . . . . 9 (𝑇 ∈ (TopOn‘𝑆) → 𝑆 = 𝑇)
1917, 18syl 17 . . . . . . . 8 (𝜑𝑆 = 𝑇)
2013, 19sseqtrd 3782 . . . . . . 7 (𝜑 → (𝐴𝐵) ⊆ 𝑇)
21 difssd 3881 . . . . . . 7 (𝜑 → ( 𝑇𝐵) ⊆ 𝑇)
2220, 21unssd 3932 . . . . . 6 (𝜑 → ((𝐴𝐵) ∪ ( 𝑇𝐵)) ⊆ 𝑇)
23 inundif 4190 . . . . . . 7 ((𝐴𝐵) ∪ (𝐴𝐵)) = 𝐴
2412, 19sseqtrd 3782 . . . . . . . 8 (𝜑𝐴 𝑇)
25 ssdif 3888 . . . . . . . 8 (𝐴 𝑇 → (𝐴𝐵) ⊆ ( 𝑇𝐵))
26 unss2 3927 . . . . . . . 8 ((𝐴𝐵) ⊆ ( 𝑇𝐵) → ((𝐴𝐵) ∪ (𝐴𝐵)) ⊆ ((𝐴𝐵) ∪ ( 𝑇𝐵)))
2724, 25, 263syl 18 . . . . . . 7 (𝜑 → ((𝐴𝐵) ∪ (𝐴𝐵)) ⊆ ((𝐴𝐵) ∪ ( 𝑇𝐵)))
2823, 27syl5eqssr 3791 . . . . . 6 (𝜑𝐴 ⊆ ((𝐴𝐵) ∪ ( 𝑇𝐵)))
29 eqid 2760 . . . . . . 7 𝑇 = 𝑇
3029ntrss 21061 . . . . . 6 ((𝑇 ∈ Top ∧ ((𝐴𝐵) ∪ ( 𝑇𝐵)) ⊆ 𝑇𝐴 ⊆ ((𝐴𝐵) ∪ ( 𝑇𝐵))) → ((int‘𝑇)‘𝐴) ⊆ ((int‘𝑇)‘((𝐴𝐵) ∪ ( 𝑇𝐵))))
3110, 22, 28, 30syl3anc 1477 . . . . 5 (𝜑 → ((int‘𝑇)‘𝐴) ⊆ ((int‘𝑇)‘((𝐴𝐵) ∪ ( 𝑇𝐵))))
32 dvres2lem.d . . . . . . 7 (𝜑𝑥(𝑆 D 𝐹)𝑦)
33 dvres.g . . . . . . . 8 𝐺 = (𝑧 ∈ (𝐴 ∖ {𝑥}) ↦ (((𝐹𝑧) − (𝐹𝑥)) / (𝑧𝑥)))
34 dvres.f . . . . . . . 8 (𝜑𝐹:𝐴⟶ℂ)
351, 2, 33, 4, 34, 12eldv 23861 . . . . . . 7 (𝜑 → (𝑥(𝑆 D 𝐹)𝑦 ↔ (𝑥 ∈ ((int‘𝑇)‘𝐴) ∧ 𝑦 ∈ (𝐺 lim 𝑥))))
3632, 35mpbid 222 . . . . . 6 (𝜑 → (𝑥 ∈ ((int‘𝑇)‘𝐴) ∧ 𝑦 ∈ (𝐺 lim 𝑥)))
3736simpld 477 . . . . 5 (𝜑𝑥 ∈ ((int‘𝑇)‘𝐴))
3831, 37sseldd 3745 . . . 4 (𝜑𝑥 ∈ ((int‘𝑇)‘((𝐴𝐵) ∪ ( 𝑇𝐵))))
39 dvres2lem.x . . . 4 (𝜑𝑥𝐵)
4038, 39elind 3941 . . 3 (𝜑𝑥 ∈ (((int‘𝑇)‘((𝐴𝐵) ∪ ( 𝑇𝐵))) ∩ 𝐵))
41 dvres.b . . . . . 6 (𝜑𝐵𝑆)
4241, 19sseqtrd 3782 . . . . 5 (𝜑𝐵 𝑇)
43 inss2 3977 . . . . . 6 (𝐴𝐵) ⊆ 𝐵
4443a1i 11 . . . . 5 (𝜑 → (𝐴𝐵) ⊆ 𝐵)
45 eqid 2760 . . . . . 6 (𝑇t 𝐵) = (𝑇t 𝐵)
4629, 45restntr 21188 . . . . 5 ((𝑇 ∈ Top ∧ 𝐵 𝑇 ∧ (𝐴𝐵) ⊆ 𝐵) → ((int‘(𝑇t 𝐵))‘(𝐴𝐵)) = (((int‘𝑇)‘((𝐴𝐵) ∪ ( 𝑇𝐵))) ∩ 𝐵))
4710, 42, 44, 46syl3anc 1477 . . . 4 (𝜑 → ((int‘(𝑇t 𝐵))‘(𝐴𝐵)) = (((int‘𝑇)‘((𝐴𝐵) ∪ ( 𝑇𝐵))) ∩ 𝐵))
481oveq1i 6823 . . . . . . 7 (𝑇t 𝐵) = ((𝐾t 𝑆) ↾t 𝐵)
493a1i 11 . . . . . . . 8 (𝜑𝐾 ∈ Top)
50 restabs 21171 . . . . . . . 8 ((𝐾 ∈ Top ∧ 𝐵𝑆𝑆 ∈ V) → ((𝐾t 𝑆) ↾t 𝐵) = (𝐾t 𝐵))
5149, 41, 7, 50syl3anc 1477 . . . . . . 7 (𝜑 → ((𝐾t 𝑆) ↾t 𝐵) = (𝐾t 𝐵))
5248, 51syl5eq 2806 . . . . . 6 (𝜑 → (𝑇t 𝐵) = (𝐾t 𝐵))
5352fveq2d 6356 . . . . 5 (𝜑 → (int‘(𝑇t 𝐵)) = (int‘(𝐾t 𝐵)))
5453fveq1d 6354 . . . 4 (𝜑 → ((int‘(𝑇t 𝐵))‘(𝐴𝐵)) = ((int‘(𝐾t 𝐵))‘(𝐴𝐵)))
5547, 54eqtr3d 2796 . . 3 (𝜑 → (((int‘𝑇)‘((𝐴𝐵) ∪ ( 𝑇𝐵))) ∩ 𝐵) = ((int‘(𝐾t 𝐵))‘(𝐴𝐵)))
5640, 55eleqtrd 2841 . 2 (𝜑𝑥 ∈ ((int‘(𝐾t 𝐵))‘(𝐴𝐵)))
57 limcresi 23848 . . . 4 (𝐺 lim 𝑥) ⊆ ((𝐺 ↾ ((𝐴𝐵) ∖ {𝑥})) lim 𝑥)
5836simprd 482 . . . 4 (𝜑𝑦 ∈ (𝐺 lim 𝑥))
5957, 58sseldi 3742 . . 3 (𝜑𝑦 ∈ ((𝐺 ↾ ((𝐴𝐵) ∖ {𝑥})) lim 𝑥))
60 difss 3880 . . . . . . . . 9 ((𝐴𝐵) ∖ {𝑥}) ⊆ (𝐴𝐵)
6160, 43sstri 3753 . . . . . . . 8 ((𝐴𝐵) ∖ {𝑥}) ⊆ 𝐵
6261sseli 3740 . . . . . . 7 (𝑧 ∈ ((𝐴𝐵) ∖ {𝑥}) → 𝑧𝐵)
63 fvres 6368 . . . . . . . . 9 (𝑧𝐵 → ((𝐹𝐵)‘𝑧) = (𝐹𝑧))
64 fvres 6368 . . . . . . . . . 10 (𝑥𝐵 → ((𝐹𝐵)‘𝑥) = (𝐹𝑥))
6539, 64syl 17 . . . . . . . . 9 (𝜑 → ((𝐹𝐵)‘𝑥) = (𝐹𝑥))
6663, 65oveqan12rd 6833 . . . . . . . 8 ((𝜑𝑧𝐵) → (((𝐹𝐵)‘𝑧) − ((𝐹𝐵)‘𝑥)) = ((𝐹𝑧) − (𝐹𝑥)))
6766oveq1d 6828 . . . . . . 7 ((𝜑𝑧𝐵) → ((((𝐹𝐵)‘𝑧) − ((𝐹𝐵)‘𝑥)) / (𝑧𝑥)) = (((𝐹𝑧) − (𝐹𝑥)) / (𝑧𝑥)))
6862, 67sylan2 492 . . . . . 6 ((𝜑𝑧 ∈ ((𝐴𝐵) ∖ {𝑥})) → ((((𝐹𝐵)‘𝑧) − ((𝐹𝐵)‘𝑥)) / (𝑧𝑥)) = (((𝐹𝑧) − (𝐹𝑥)) / (𝑧𝑥)))
6968mpteq2dva 4896 . . . . 5 (𝜑 → (𝑧 ∈ ((𝐴𝐵) ∖ {𝑥}) ↦ ((((𝐹𝐵)‘𝑧) − ((𝐹𝐵)‘𝑥)) / (𝑧𝑥))) = (𝑧 ∈ ((𝐴𝐵) ∖ {𝑥}) ↦ (((𝐹𝑧) − (𝐹𝑥)) / (𝑧𝑥))))
7033reseq1i 5547 . . . . . 6 (𝐺 ↾ ((𝐴𝐵) ∖ {𝑥})) = ((𝑧 ∈ (𝐴 ∖ {𝑥}) ↦ (((𝐹𝑧) − (𝐹𝑥)) / (𝑧𝑥))) ↾ ((𝐴𝐵) ∖ {𝑥}))
71 ssdif 3888 . . . . . . 7 ((𝐴𝐵) ⊆ 𝐴 → ((𝐴𝐵) ∖ {𝑥}) ⊆ (𝐴 ∖ {𝑥}))
72 resmpt 5607 . . . . . . 7 (((𝐴𝐵) ∖ {𝑥}) ⊆ (𝐴 ∖ {𝑥}) → ((𝑧 ∈ (𝐴 ∖ {𝑥}) ↦ (((𝐹𝑧) − (𝐹𝑥)) / (𝑧𝑥))) ↾ ((𝐴𝐵) ∖ {𝑥})) = (𝑧 ∈ ((𝐴𝐵) ∖ {𝑥}) ↦ (((𝐹𝑧) − (𝐹𝑥)) / (𝑧𝑥))))
7311, 71, 72mp2b 10 . . . . . 6 ((𝑧 ∈ (𝐴 ∖ {𝑥}) ↦ (((𝐹𝑧) − (𝐹𝑥)) / (𝑧𝑥))) ↾ ((𝐴𝐵) ∖ {𝑥})) = (𝑧 ∈ ((𝐴𝐵) ∖ {𝑥}) ↦ (((𝐹𝑧) − (𝐹𝑥)) / (𝑧𝑥)))
7470, 73eqtri 2782 . . . . 5 (𝐺 ↾ ((𝐴𝐵) ∖ {𝑥})) = (𝑧 ∈ ((𝐴𝐵) ∖ {𝑥}) ↦ (((𝐹𝑧) − (𝐹𝑥)) / (𝑧𝑥)))
7569, 74syl6eqr 2812 . . . 4 (𝜑 → (𝑧 ∈ ((𝐴𝐵) ∖ {𝑥}) ↦ ((((𝐹𝐵)‘𝑧) − ((𝐹𝐵)‘𝑥)) / (𝑧𝑥))) = (𝐺 ↾ ((𝐴𝐵) ∖ {𝑥})))
7675oveq1d 6828 . . 3 (𝜑 → ((𝑧 ∈ ((𝐴𝐵) ∖ {𝑥}) ↦ ((((𝐹𝐵)‘𝑧) − ((𝐹𝐵)‘𝑥)) / (𝑧𝑥))) lim 𝑥) = ((𝐺 ↾ ((𝐴𝐵) ∖ {𝑥})) lim 𝑥))
7759, 76eleqtrrd 2842 . 2 (𝜑𝑦 ∈ ((𝑧 ∈ ((𝐴𝐵) ∖ {𝑥}) ↦ ((((𝐹𝐵)‘𝑧) − ((𝐹𝐵)‘𝑥)) / (𝑧𝑥))) lim 𝑥))
78 eqid 2760 . . 3 (𝐾t 𝐵) = (𝐾t 𝐵)
79 eqid 2760 . . 3 (𝑧 ∈ ((𝐴𝐵) ∖ {𝑥}) ↦ ((((𝐹𝐵)‘𝑧) − ((𝐹𝐵)‘𝑥)) / (𝑧𝑥))) = (𝑧 ∈ ((𝐴𝐵) ∖ {𝑥}) ↦ ((((𝐹𝐵)‘𝑧) − ((𝐹𝐵)‘𝑥)) / (𝑧𝑥)))
8041, 4sstrd 3754 . . 3 (𝜑𝐵 ⊆ ℂ)
81 fresin 6234 . . . 4 (𝐹:𝐴⟶ℂ → (𝐹𝐵):(𝐴𝐵)⟶ℂ)
8234, 81syl 17 . . 3 (𝜑 → (𝐹𝐵):(𝐴𝐵)⟶ℂ)
8378, 2, 79, 80, 82, 44eldv 23861 . 2 (𝜑 → (𝑥(𝐵 D (𝐹𝐵))𝑦 ↔ (𝑥 ∈ ((int‘(𝐾t 𝐵))‘(𝐴𝐵)) ∧ 𝑦 ∈ ((𝑧 ∈ ((𝐴𝐵) ∖ {𝑥}) ↦ ((((𝐹𝐵)‘𝑧) − ((𝐹𝐵)‘𝑥)) / (𝑧𝑥))) lim 𝑥))))
8456, 77, 83mpbir2and 995 1 (𝜑𝑥(𝐵 D (𝐹𝐵))𝑦)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383   = wceq 1632  wcel 2139  Vcvv 3340  cdif 3712  cun 3713  cin 3714  wss 3715  {csn 4321   cuni 4588   class class class wbr 4804  cmpt 4881  cres 5268  wf 6045  cfv 6049  (class class class)co 6813  cc 10126  cmin 10458   / cdiv 10876  t crest 16283  TopOpenctopn 16284  fldccnfld 19948  Topctop 20900  TopOnctopon 20917  intcnt 21023   lim climc 23825   D cdv 23826
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-rep 4923  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7114  ax-cnex 10184  ax-resscn 10185  ax-1cn 10186  ax-icn 10187  ax-addcl 10188  ax-addrcl 10189  ax-mulcl 10190  ax-mulrcl 10191  ax-mulcom 10192  ax-addass 10193  ax-mulass 10194  ax-distr 10195  ax-i2m1 10196  ax-1ne0 10197  ax-1rid 10198  ax-rnegex 10199  ax-rrecex 10200  ax-cnre 10201  ax-pre-lttri 10202  ax-pre-lttrn 10203  ax-pre-ltadd 10204  ax-pre-mulgt0 10205  ax-pre-sup 10206
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-nel 3036  df-ral 3055  df-rex 3056  df-reu 3057  df-rmo 3058  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-pss 3731  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-tp 4326  df-op 4328  df-uni 4589  df-int 4628  df-iun 4674  df-iin 4675  df-br 4805  df-opab 4865  df-mpt 4882  df-tr 4905  df-id 5174  df-eprel 5179  df-po 5187  df-so 5188  df-fr 5225  df-we 5227  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-pred 5841  df-ord 5887  df-on 5888  df-lim 5889  df-suc 5890  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-riota 6774  df-ov 6816  df-oprab 6817  df-mpt2 6818  df-om 7231  df-1st 7333  df-2nd 7334  df-wrecs 7576  df-recs 7637  df-rdg 7675  df-1o 7729  df-oadd 7733  df-er 7911  df-map 8025  df-pm 8026  df-en 8122  df-dom 8123  df-sdom 8124  df-fin 8125  df-fi 8482  df-sup 8513  df-inf 8514  df-pnf 10268  df-mnf 10269  df-xr 10270  df-ltxr 10271  df-le 10272  df-sub 10460  df-neg 10461  df-div 10877  df-nn 11213  df-2 11271  df-3 11272  df-4 11273  df-5 11274  df-6 11275  df-7 11276  df-8 11277  df-9 11278  df-n0 11485  df-z 11570  df-dec 11686  df-uz 11880  df-q 11982  df-rp 12026  df-xneg 12139  df-xadd 12140  df-xmul 12141  df-fz 12520  df-seq 12996  df-exp 13055  df-cj 14038  df-re 14039  df-im 14040  df-sqrt 14174  df-abs 14175  df-struct 16061  df-ndx 16062  df-slot 16063  df-base 16065  df-plusg 16156  df-mulr 16157  df-starv 16158  df-tset 16162  df-ple 16163  df-ds 16166  df-unif 16167  df-rest 16285  df-topn 16286  df-topgen 16306  df-psmet 19940  df-xmet 19941  df-met 19942  df-bl 19943  df-mopn 19944  df-cnfld 19949  df-top 20901  df-topon 20918  df-topsp 20939  df-bases 20952  df-cld 21025  df-ntr 21026  df-cls 21027  df-cnp 21234  df-xms 22326  df-ms 22327  df-limc 23829  df-dv 23830
This theorem is referenced by:  dvres2  23875
  Copyright terms: Public domain W3C validator