MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvres Structured version   Visualization version   GIF version

Theorem dvres 23795
Description: Restriction of a derivative. Note that our definition of derivative df-dv 23751 would still make sense if we demanded that 𝑥 be an element of the domain instead of an interior point of the domain, but then it is possible for a non-differentiable function to have two different derivatives at a single point 𝑥 when restricted to different subsets containing 𝑥; a classic example is the absolute value function restricted to [0, +∞) and (-∞, 0]. (Contributed by Mario Carneiro, 8-Aug-2014.) (Revised by Mario Carneiro, 9-Feb-2015.)
Hypotheses
Ref Expression
dvres.k 𝐾 = (TopOpen‘ℂfld)
dvres.t 𝑇 = (𝐾t 𝑆)
Assertion
Ref Expression
dvres (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ) ∧ (𝐴𝑆𝐵𝑆)) → (𝑆 D (𝐹𝐵)) = ((𝑆 D 𝐹) ↾ ((int‘𝑇)‘𝐵)))

Proof of Theorem dvres
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 reldv 23754 . 2 Rel (𝑆 D (𝐹𝐵))
2 relres 5536 . 2 Rel ((𝑆 D 𝐹) ↾ ((int‘𝑇)‘𝐵))
3 simpll 807 . . . . . 6 (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ) ∧ (𝐴𝑆𝐵𝑆)) → 𝑆 ⊆ ℂ)
4 simplr 809 . . . . . . . 8 (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ) ∧ (𝐴𝑆𝐵𝑆)) → 𝐹:𝐴⟶ℂ)
5 inss1 3941 . . . . . . . 8 (𝐴𝐵) ⊆ 𝐴
6 fssres 6183 . . . . . . . 8 ((𝐹:𝐴⟶ℂ ∧ (𝐴𝐵) ⊆ 𝐴) → (𝐹 ↾ (𝐴𝐵)):(𝐴𝐵)⟶ℂ)
74, 5, 6sylancl 697 . . . . . . 7 (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ) ∧ (𝐴𝑆𝐵𝑆)) → (𝐹 ↾ (𝐴𝐵)):(𝐴𝐵)⟶ℂ)
8 resres 5519 . . . . . . . . 9 ((𝐹𝐴) ↾ 𝐵) = (𝐹 ↾ (𝐴𝐵))
9 ffn 6158 . . . . . . . . . . 11 (𝐹:𝐴⟶ℂ → 𝐹 Fn 𝐴)
10 fnresdm 6113 . . . . . . . . . . 11 (𝐹 Fn 𝐴 → (𝐹𝐴) = 𝐹)
114, 9, 103syl 18 . . . . . . . . . 10 (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ) ∧ (𝐴𝑆𝐵𝑆)) → (𝐹𝐴) = 𝐹)
1211reseq1d 5502 . . . . . . . . 9 (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ) ∧ (𝐴𝑆𝐵𝑆)) → ((𝐹𝐴) ↾ 𝐵) = (𝐹𝐵))
138, 12syl5eqr 2772 . . . . . . . 8 (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ) ∧ (𝐴𝑆𝐵𝑆)) → (𝐹 ↾ (𝐴𝐵)) = (𝐹𝐵))
1413feq1d 6143 . . . . . . 7 (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ) ∧ (𝐴𝑆𝐵𝑆)) → ((𝐹 ↾ (𝐴𝐵)):(𝐴𝐵)⟶ℂ ↔ (𝐹𝐵):(𝐴𝐵)⟶ℂ))
157, 14mpbid 222 . . . . . 6 (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ) ∧ (𝐴𝑆𝐵𝑆)) → (𝐹𝐵):(𝐴𝐵)⟶ℂ)
16 simprl 811 . . . . . . 7 (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ) ∧ (𝐴𝑆𝐵𝑆)) → 𝐴𝑆)
175, 16syl5ss 3720 . . . . . 6 (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ) ∧ (𝐴𝑆𝐵𝑆)) → (𝐴𝐵) ⊆ 𝑆)
183, 15, 17dvcl 23783 . . . . 5 ((((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ) ∧ (𝐴𝑆𝐵𝑆)) ∧ 𝑥(𝑆 D (𝐹𝐵))𝑦) → 𝑦 ∈ ℂ)
1918ex 449 . . . 4 (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ) ∧ (𝐴𝑆𝐵𝑆)) → (𝑥(𝑆 D (𝐹𝐵))𝑦𝑦 ∈ ℂ))
203, 4, 16dvcl 23783 . . . . . 6 ((((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ) ∧ (𝐴𝑆𝐵𝑆)) ∧ 𝑥(𝑆 D 𝐹)𝑦) → 𝑦 ∈ ℂ)
2120ex 449 . . . . 5 (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ) ∧ (𝐴𝑆𝐵𝑆)) → (𝑥(𝑆 D 𝐹)𝑦𝑦 ∈ ℂ))
2221adantrd 485 . . . 4 (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ) ∧ (𝐴𝑆𝐵𝑆)) → ((𝑥(𝑆 D 𝐹)𝑦𝑥 ∈ ((int‘𝑇)‘𝐵)) → 𝑦 ∈ ℂ))
23 dvres.k . . . . . 6 𝐾 = (TopOpen‘ℂfld)
24 dvres.t . . . . . 6 𝑇 = (𝐾t 𝑆)
25 eqid 2724 . . . . . 6 (𝑧 ∈ (𝐴 ∖ {𝑥}) ↦ (((𝐹𝑧) − (𝐹𝑥)) / (𝑧𝑥))) = (𝑧 ∈ (𝐴 ∖ {𝑥}) ↦ (((𝐹𝑧) − (𝐹𝑥)) / (𝑧𝑥)))
263adantr 472 . . . . . 6 ((((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ) ∧ (𝐴𝑆𝐵𝑆)) ∧ 𝑦 ∈ ℂ) → 𝑆 ⊆ ℂ)
274adantr 472 . . . . . 6 ((((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ) ∧ (𝐴𝑆𝐵𝑆)) ∧ 𝑦 ∈ ℂ) → 𝐹:𝐴⟶ℂ)
2816adantr 472 . . . . . 6 ((((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ) ∧ (𝐴𝑆𝐵𝑆)) ∧ 𝑦 ∈ ℂ) → 𝐴𝑆)
29 simplrr 820 . . . . . 6 ((((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ) ∧ (𝐴𝑆𝐵𝑆)) ∧ 𝑦 ∈ ℂ) → 𝐵𝑆)
30 simpr 479 . . . . . 6 ((((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ) ∧ (𝐴𝑆𝐵𝑆)) ∧ 𝑦 ∈ ℂ) → 𝑦 ∈ ℂ)
3123, 24, 25, 26, 27, 28, 29, 30dvreslem 23793 . . . . 5 ((((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ) ∧ (𝐴𝑆𝐵𝑆)) ∧ 𝑦 ∈ ℂ) → (𝑥(𝑆 D (𝐹𝐵))𝑦 ↔ (𝑥(𝑆 D 𝐹)𝑦𝑥 ∈ ((int‘𝑇)‘𝐵))))
3231ex 449 . . . 4 (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ) ∧ (𝐴𝑆𝐵𝑆)) → (𝑦 ∈ ℂ → (𝑥(𝑆 D (𝐹𝐵))𝑦 ↔ (𝑥(𝑆 D 𝐹)𝑦𝑥 ∈ ((int‘𝑇)‘𝐵)))))
3319, 22, 32pm5.21ndd 368 . . 3 (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ) ∧ (𝐴𝑆𝐵𝑆)) → (𝑥(𝑆 D (𝐹𝐵))𝑦 ↔ (𝑥(𝑆 D 𝐹)𝑦𝑥 ∈ ((int‘𝑇)‘𝐵))))
34 vex 3307 . . . 4 𝑦 ∈ V
3534brres 5512 . . 3 (𝑥((𝑆 D 𝐹) ↾ ((int‘𝑇)‘𝐵))𝑦 ↔ (𝑥(𝑆 D 𝐹)𝑦𝑥 ∈ ((int‘𝑇)‘𝐵)))
3633, 35syl6bbr 278 . 2 (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ) ∧ (𝐴𝑆𝐵𝑆)) → (𝑥(𝑆 D (𝐹𝐵))𝑦𝑥((𝑆 D 𝐹) ↾ ((int‘𝑇)‘𝐵))𝑦))
371, 2, 36eqbrrdiv 5327 1 (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ) ∧ (𝐴𝑆𝐵𝑆)) → (𝑆 D (𝐹𝐵)) = ((𝑆 D 𝐹) ↾ ((int‘𝑇)‘𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383   = wceq 1596  wcel 2103  cdif 3677  cin 3679  wss 3680  {csn 4285   class class class wbr 4760  cmpt 4837  cres 5220   Fn wfn 5996  wf 5997  cfv 6001  (class class class)co 6765  cc 10047  cmin 10379   / cdiv 10797  t crest 16204  TopOpenctopn 16205  fldccnfld 19869  intcnt 20944   D cdv 23747
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1835  ax-4 1850  ax-5 1952  ax-6 2018  ax-7 2054  ax-8 2105  ax-9 2112  ax-10 2132  ax-11 2147  ax-12 2160  ax-13 2355  ax-ext 2704  ax-rep 4879  ax-sep 4889  ax-nul 4897  ax-pow 4948  ax-pr 5011  ax-un 7066  ax-cnex 10105  ax-resscn 10106  ax-1cn 10107  ax-icn 10108  ax-addcl 10109  ax-addrcl 10110  ax-mulcl 10111  ax-mulrcl 10112  ax-mulcom 10113  ax-addass 10114  ax-mulass 10115  ax-distr 10116  ax-i2m1 10117  ax-1ne0 10118  ax-1rid 10119  ax-rnegex 10120  ax-rrecex 10121  ax-cnre 10122  ax-pre-lttri 10123  ax-pre-lttrn 10124  ax-pre-ltadd 10125  ax-pre-mulgt0 10126  ax-pre-sup 10127
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1599  df-ex 1818  df-nf 1823  df-sb 2011  df-eu 2575  df-mo 2576  df-clab 2711  df-cleq 2717  df-clel 2720  df-nfc 2855  df-ne 2897  df-nel 3000  df-ral 3019  df-rex 3020  df-reu 3021  df-rmo 3022  df-rab 3023  df-v 3306  df-sbc 3542  df-csb 3640  df-dif 3683  df-un 3685  df-in 3687  df-ss 3694  df-pss 3696  df-nul 4024  df-if 4195  df-pw 4268  df-sn 4286  df-pr 4288  df-tp 4290  df-op 4292  df-uni 4545  df-int 4584  df-iun 4630  df-iin 4631  df-br 4761  df-opab 4821  df-mpt 4838  df-tr 4861  df-id 5128  df-eprel 5133  df-po 5139  df-so 5140  df-fr 5177  df-we 5179  df-xp 5224  df-rel 5225  df-cnv 5226  df-co 5227  df-dm 5228  df-rn 5229  df-res 5230  df-ima 5231  df-pred 5793  df-ord 5839  df-on 5840  df-lim 5841  df-suc 5842  df-iota 5964  df-fun 6003  df-fn 6004  df-f 6005  df-f1 6006  df-fo 6007  df-f1o 6008  df-fv 6009  df-riota 6726  df-ov 6768  df-oprab 6769  df-mpt2 6770  df-om 7183  df-1st 7285  df-2nd 7286  df-wrecs 7527  df-recs 7588  df-rdg 7626  df-1o 7680  df-oadd 7684  df-er 7862  df-map 7976  df-pm 7977  df-en 8073  df-dom 8074  df-sdom 8075  df-fin 8076  df-fi 8433  df-sup 8464  df-inf 8465  df-pnf 10189  df-mnf 10190  df-xr 10191  df-ltxr 10192  df-le 10193  df-sub 10381  df-neg 10382  df-div 10798  df-nn 11134  df-2 11192  df-3 11193  df-4 11194  df-5 11195  df-6 11196  df-7 11197  df-8 11198  df-9 11199  df-n0 11406  df-z 11491  df-dec 11607  df-uz 11801  df-q 11903  df-rp 11947  df-xneg 12060  df-xadd 12061  df-xmul 12062  df-fz 12441  df-seq 12917  df-exp 12976  df-cj 13959  df-re 13960  df-im 13961  df-sqrt 14095  df-abs 14096  df-struct 15982  df-ndx 15983  df-slot 15984  df-base 15986  df-plusg 16077  df-mulr 16078  df-starv 16079  df-tset 16083  df-ple 16084  df-ds 16087  df-unif 16088  df-rest 16206  df-topn 16207  df-topgen 16227  df-psmet 19861  df-xmet 19862  df-met 19863  df-bl 19864  df-mopn 19865  df-cnfld 19870  df-top 20822  df-topon 20839  df-topsp 20860  df-bases 20873  df-cld 20946  df-ntr 20947  df-cls 20948  df-cnp 21155  df-xms 22247  df-ms 22248  df-limc 23750  df-dv 23751
This theorem is referenced by:  dvcmulf  23828  dvmptres2  23845  dvmptntr  23854  dvlip  23876  dvlipcn  23877  dvlip2  23878  c1liplem1  23879  dvgt0lem1  23885  dvne0  23894  lhop1lem  23896  lhop  23899  dvcnvrelem1  23900  dvcvx  23903  ftc2ditglem  23928  pserdv  24303  efcvx  24323  dvlog  24517  dvlog2  24519  ftc2re  30906  dvresntr  40552  dvmptresicc  40554  dvresioo  40556  dvbdfbdioolem1  40563  itgcoscmulx  40605  itgiccshift  40616  itgperiod  40617  dirkercncflem2  40741  fourierdlem57  40800  fourierdlem58  40801  fourierdlem72  40815  fourierdlem73  40816  fourierdlem74  40817  fourierdlem75  40818  fourierdlem80  40823  fourierdlem94  40837  fourierdlem103  40846  fourierdlem104  40847  fourierdlem113  40856
  Copyright terms: Public domain W3C validator