![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dvres | Structured version Visualization version GIF version |
Description: Restriction of a derivative. Note that our definition of derivative df-dv 23751 would still make sense if we demanded that 𝑥 be an element of the domain instead of an interior point of the domain, but then it is possible for a non-differentiable function to have two different derivatives at a single point 𝑥 when restricted to different subsets containing 𝑥; a classic example is the absolute value function restricted to [0, +∞) and (-∞, 0]. (Contributed by Mario Carneiro, 8-Aug-2014.) (Revised by Mario Carneiro, 9-Feb-2015.) |
Ref | Expression |
---|---|
dvres.k | ⊢ 𝐾 = (TopOpen‘ℂfld) |
dvres.t | ⊢ 𝑇 = (𝐾 ↾t 𝑆) |
Ref | Expression |
---|---|
dvres | ⊢ (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ) ∧ (𝐴 ⊆ 𝑆 ∧ 𝐵 ⊆ 𝑆)) → (𝑆 D (𝐹 ↾ 𝐵)) = ((𝑆 D 𝐹) ↾ ((int‘𝑇)‘𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | reldv 23754 | . 2 ⊢ Rel (𝑆 D (𝐹 ↾ 𝐵)) | |
2 | relres 5536 | . 2 ⊢ Rel ((𝑆 D 𝐹) ↾ ((int‘𝑇)‘𝐵)) | |
3 | simpll 807 | . . . . . 6 ⊢ (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ) ∧ (𝐴 ⊆ 𝑆 ∧ 𝐵 ⊆ 𝑆)) → 𝑆 ⊆ ℂ) | |
4 | simplr 809 | . . . . . . . 8 ⊢ (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ) ∧ (𝐴 ⊆ 𝑆 ∧ 𝐵 ⊆ 𝑆)) → 𝐹:𝐴⟶ℂ) | |
5 | inss1 3941 | . . . . . . . 8 ⊢ (𝐴 ∩ 𝐵) ⊆ 𝐴 | |
6 | fssres 6183 | . . . . . . . 8 ⊢ ((𝐹:𝐴⟶ℂ ∧ (𝐴 ∩ 𝐵) ⊆ 𝐴) → (𝐹 ↾ (𝐴 ∩ 𝐵)):(𝐴 ∩ 𝐵)⟶ℂ) | |
7 | 4, 5, 6 | sylancl 697 | . . . . . . 7 ⊢ (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ) ∧ (𝐴 ⊆ 𝑆 ∧ 𝐵 ⊆ 𝑆)) → (𝐹 ↾ (𝐴 ∩ 𝐵)):(𝐴 ∩ 𝐵)⟶ℂ) |
8 | resres 5519 | . . . . . . . . 9 ⊢ ((𝐹 ↾ 𝐴) ↾ 𝐵) = (𝐹 ↾ (𝐴 ∩ 𝐵)) | |
9 | ffn 6158 | . . . . . . . . . . 11 ⊢ (𝐹:𝐴⟶ℂ → 𝐹 Fn 𝐴) | |
10 | fnresdm 6113 | . . . . . . . . . . 11 ⊢ (𝐹 Fn 𝐴 → (𝐹 ↾ 𝐴) = 𝐹) | |
11 | 4, 9, 10 | 3syl 18 | . . . . . . . . . 10 ⊢ (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ) ∧ (𝐴 ⊆ 𝑆 ∧ 𝐵 ⊆ 𝑆)) → (𝐹 ↾ 𝐴) = 𝐹) |
12 | 11 | reseq1d 5502 | . . . . . . . . 9 ⊢ (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ) ∧ (𝐴 ⊆ 𝑆 ∧ 𝐵 ⊆ 𝑆)) → ((𝐹 ↾ 𝐴) ↾ 𝐵) = (𝐹 ↾ 𝐵)) |
13 | 8, 12 | syl5eqr 2772 | . . . . . . . 8 ⊢ (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ) ∧ (𝐴 ⊆ 𝑆 ∧ 𝐵 ⊆ 𝑆)) → (𝐹 ↾ (𝐴 ∩ 𝐵)) = (𝐹 ↾ 𝐵)) |
14 | 13 | feq1d 6143 | . . . . . . 7 ⊢ (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ) ∧ (𝐴 ⊆ 𝑆 ∧ 𝐵 ⊆ 𝑆)) → ((𝐹 ↾ (𝐴 ∩ 𝐵)):(𝐴 ∩ 𝐵)⟶ℂ ↔ (𝐹 ↾ 𝐵):(𝐴 ∩ 𝐵)⟶ℂ)) |
15 | 7, 14 | mpbid 222 | . . . . . 6 ⊢ (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ) ∧ (𝐴 ⊆ 𝑆 ∧ 𝐵 ⊆ 𝑆)) → (𝐹 ↾ 𝐵):(𝐴 ∩ 𝐵)⟶ℂ) |
16 | simprl 811 | . . . . . . 7 ⊢ (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ) ∧ (𝐴 ⊆ 𝑆 ∧ 𝐵 ⊆ 𝑆)) → 𝐴 ⊆ 𝑆) | |
17 | 5, 16 | syl5ss 3720 | . . . . . 6 ⊢ (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ) ∧ (𝐴 ⊆ 𝑆 ∧ 𝐵 ⊆ 𝑆)) → (𝐴 ∩ 𝐵) ⊆ 𝑆) |
18 | 3, 15, 17 | dvcl 23783 | . . . . 5 ⊢ ((((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ) ∧ (𝐴 ⊆ 𝑆 ∧ 𝐵 ⊆ 𝑆)) ∧ 𝑥(𝑆 D (𝐹 ↾ 𝐵))𝑦) → 𝑦 ∈ ℂ) |
19 | 18 | ex 449 | . . . 4 ⊢ (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ) ∧ (𝐴 ⊆ 𝑆 ∧ 𝐵 ⊆ 𝑆)) → (𝑥(𝑆 D (𝐹 ↾ 𝐵))𝑦 → 𝑦 ∈ ℂ)) |
20 | 3, 4, 16 | dvcl 23783 | . . . . . 6 ⊢ ((((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ) ∧ (𝐴 ⊆ 𝑆 ∧ 𝐵 ⊆ 𝑆)) ∧ 𝑥(𝑆 D 𝐹)𝑦) → 𝑦 ∈ ℂ) |
21 | 20 | ex 449 | . . . . 5 ⊢ (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ) ∧ (𝐴 ⊆ 𝑆 ∧ 𝐵 ⊆ 𝑆)) → (𝑥(𝑆 D 𝐹)𝑦 → 𝑦 ∈ ℂ)) |
22 | 21 | adantrd 485 | . . . 4 ⊢ (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ) ∧ (𝐴 ⊆ 𝑆 ∧ 𝐵 ⊆ 𝑆)) → ((𝑥(𝑆 D 𝐹)𝑦 ∧ 𝑥 ∈ ((int‘𝑇)‘𝐵)) → 𝑦 ∈ ℂ)) |
23 | dvres.k | . . . . . 6 ⊢ 𝐾 = (TopOpen‘ℂfld) | |
24 | dvres.t | . . . . . 6 ⊢ 𝑇 = (𝐾 ↾t 𝑆) | |
25 | eqid 2724 | . . . . . 6 ⊢ (𝑧 ∈ (𝐴 ∖ {𝑥}) ↦ (((𝐹‘𝑧) − (𝐹‘𝑥)) / (𝑧 − 𝑥))) = (𝑧 ∈ (𝐴 ∖ {𝑥}) ↦ (((𝐹‘𝑧) − (𝐹‘𝑥)) / (𝑧 − 𝑥))) | |
26 | 3 | adantr 472 | . . . . . 6 ⊢ ((((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ) ∧ (𝐴 ⊆ 𝑆 ∧ 𝐵 ⊆ 𝑆)) ∧ 𝑦 ∈ ℂ) → 𝑆 ⊆ ℂ) |
27 | 4 | adantr 472 | . . . . . 6 ⊢ ((((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ) ∧ (𝐴 ⊆ 𝑆 ∧ 𝐵 ⊆ 𝑆)) ∧ 𝑦 ∈ ℂ) → 𝐹:𝐴⟶ℂ) |
28 | 16 | adantr 472 | . . . . . 6 ⊢ ((((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ) ∧ (𝐴 ⊆ 𝑆 ∧ 𝐵 ⊆ 𝑆)) ∧ 𝑦 ∈ ℂ) → 𝐴 ⊆ 𝑆) |
29 | simplrr 820 | . . . . . 6 ⊢ ((((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ) ∧ (𝐴 ⊆ 𝑆 ∧ 𝐵 ⊆ 𝑆)) ∧ 𝑦 ∈ ℂ) → 𝐵 ⊆ 𝑆) | |
30 | simpr 479 | . . . . . 6 ⊢ ((((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ) ∧ (𝐴 ⊆ 𝑆 ∧ 𝐵 ⊆ 𝑆)) ∧ 𝑦 ∈ ℂ) → 𝑦 ∈ ℂ) | |
31 | 23, 24, 25, 26, 27, 28, 29, 30 | dvreslem 23793 | . . . . 5 ⊢ ((((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ) ∧ (𝐴 ⊆ 𝑆 ∧ 𝐵 ⊆ 𝑆)) ∧ 𝑦 ∈ ℂ) → (𝑥(𝑆 D (𝐹 ↾ 𝐵))𝑦 ↔ (𝑥(𝑆 D 𝐹)𝑦 ∧ 𝑥 ∈ ((int‘𝑇)‘𝐵)))) |
32 | 31 | ex 449 | . . . 4 ⊢ (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ) ∧ (𝐴 ⊆ 𝑆 ∧ 𝐵 ⊆ 𝑆)) → (𝑦 ∈ ℂ → (𝑥(𝑆 D (𝐹 ↾ 𝐵))𝑦 ↔ (𝑥(𝑆 D 𝐹)𝑦 ∧ 𝑥 ∈ ((int‘𝑇)‘𝐵))))) |
33 | 19, 22, 32 | pm5.21ndd 368 | . . 3 ⊢ (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ) ∧ (𝐴 ⊆ 𝑆 ∧ 𝐵 ⊆ 𝑆)) → (𝑥(𝑆 D (𝐹 ↾ 𝐵))𝑦 ↔ (𝑥(𝑆 D 𝐹)𝑦 ∧ 𝑥 ∈ ((int‘𝑇)‘𝐵)))) |
34 | vex 3307 | . . . 4 ⊢ 𝑦 ∈ V | |
35 | 34 | brres 5512 | . . 3 ⊢ (𝑥((𝑆 D 𝐹) ↾ ((int‘𝑇)‘𝐵))𝑦 ↔ (𝑥(𝑆 D 𝐹)𝑦 ∧ 𝑥 ∈ ((int‘𝑇)‘𝐵))) |
36 | 33, 35 | syl6bbr 278 | . 2 ⊢ (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ) ∧ (𝐴 ⊆ 𝑆 ∧ 𝐵 ⊆ 𝑆)) → (𝑥(𝑆 D (𝐹 ↾ 𝐵))𝑦 ↔ 𝑥((𝑆 D 𝐹) ↾ ((int‘𝑇)‘𝐵))𝑦)) |
37 | 1, 2, 36 | eqbrrdiv 5327 | 1 ⊢ (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ) ∧ (𝐴 ⊆ 𝑆 ∧ 𝐵 ⊆ 𝑆)) → (𝑆 D (𝐹 ↾ 𝐵)) = ((𝑆 D 𝐹) ↾ ((int‘𝑇)‘𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 383 = wceq 1596 ∈ wcel 2103 ∖ cdif 3677 ∩ cin 3679 ⊆ wss 3680 {csn 4285 class class class wbr 4760 ↦ cmpt 4837 ↾ cres 5220 Fn wfn 5996 ⟶wf 5997 ‘cfv 6001 (class class class)co 6765 ℂcc 10047 − cmin 10379 / cdiv 10797 ↾t crest 16204 TopOpenctopn 16205 ℂfldccnfld 19869 intcnt 20944 D cdv 23747 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1835 ax-4 1850 ax-5 1952 ax-6 2018 ax-7 2054 ax-8 2105 ax-9 2112 ax-10 2132 ax-11 2147 ax-12 2160 ax-13 2355 ax-ext 2704 ax-rep 4879 ax-sep 4889 ax-nul 4897 ax-pow 4948 ax-pr 5011 ax-un 7066 ax-cnex 10105 ax-resscn 10106 ax-1cn 10107 ax-icn 10108 ax-addcl 10109 ax-addrcl 10110 ax-mulcl 10111 ax-mulrcl 10112 ax-mulcom 10113 ax-addass 10114 ax-mulass 10115 ax-distr 10116 ax-i2m1 10117 ax-1ne0 10118 ax-1rid 10119 ax-rnegex 10120 ax-rrecex 10121 ax-cnre 10122 ax-pre-lttri 10123 ax-pre-lttrn 10124 ax-pre-ltadd 10125 ax-pre-mulgt0 10126 ax-pre-sup 10127 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1599 df-ex 1818 df-nf 1823 df-sb 2011 df-eu 2575 df-mo 2576 df-clab 2711 df-cleq 2717 df-clel 2720 df-nfc 2855 df-ne 2897 df-nel 3000 df-ral 3019 df-rex 3020 df-reu 3021 df-rmo 3022 df-rab 3023 df-v 3306 df-sbc 3542 df-csb 3640 df-dif 3683 df-un 3685 df-in 3687 df-ss 3694 df-pss 3696 df-nul 4024 df-if 4195 df-pw 4268 df-sn 4286 df-pr 4288 df-tp 4290 df-op 4292 df-uni 4545 df-int 4584 df-iun 4630 df-iin 4631 df-br 4761 df-opab 4821 df-mpt 4838 df-tr 4861 df-id 5128 df-eprel 5133 df-po 5139 df-so 5140 df-fr 5177 df-we 5179 df-xp 5224 df-rel 5225 df-cnv 5226 df-co 5227 df-dm 5228 df-rn 5229 df-res 5230 df-ima 5231 df-pred 5793 df-ord 5839 df-on 5840 df-lim 5841 df-suc 5842 df-iota 5964 df-fun 6003 df-fn 6004 df-f 6005 df-f1 6006 df-fo 6007 df-f1o 6008 df-fv 6009 df-riota 6726 df-ov 6768 df-oprab 6769 df-mpt2 6770 df-om 7183 df-1st 7285 df-2nd 7286 df-wrecs 7527 df-recs 7588 df-rdg 7626 df-1o 7680 df-oadd 7684 df-er 7862 df-map 7976 df-pm 7977 df-en 8073 df-dom 8074 df-sdom 8075 df-fin 8076 df-fi 8433 df-sup 8464 df-inf 8465 df-pnf 10189 df-mnf 10190 df-xr 10191 df-ltxr 10192 df-le 10193 df-sub 10381 df-neg 10382 df-div 10798 df-nn 11134 df-2 11192 df-3 11193 df-4 11194 df-5 11195 df-6 11196 df-7 11197 df-8 11198 df-9 11199 df-n0 11406 df-z 11491 df-dec 11607 df-uz 11801 df-q 11903 df-rp 11947 df-xneg 12060 df-xadd 12061 df-xmul 12062 df-fz 12441 df-seq 12917 df-exp 12976 df-cj 13959 df-re 13960 df-im 13961 df-sqrt 14095 df-abs 14096 df-struct 15982 df-ndx 15983 df-slot 15984 df-base 15986 df-plusg 16077 df-mulr 16078 df-starv 16079 df-tset 16083 df-ple 16084 df-ds 16087 df-unif 16088 df-rest 16206 df-topn 16207 df-topgen 16227 df-psmet 19861 df-xmet 19862 df-met 19863 df-bl 19864 df-mopn 19865 df-cnfld 19870 df-top 20822 df-topon 20839 df-topsp 20860 df-bases 20873 df-cld 20946 df-ntr 20947 df-cls 20948 df-cnp 21155 df-xms 22247 df-ms 22248 df-limc 23750 df-dv 23751 |
This theorem is referenced by: dvcmulf 23828 dvmptres2 23845 dvmptntr 23854 dvlip 23876 dvlipcn 23877 dvlip2 23878 c1liplem1 23879 dvgt0lem1 23885 dvne0 23894 lhop1lem 23896 lhop 23899 dvcnvrelem1 23900 dvcvx 23903 ftc2ditglem 23928 pserdv 24303 efcvx 24323 dvlog 24517 dvlog2 24519 ftc2re 30906 dvresntr 40552 dvmptresicc 40554 dvresioo 40556 dvbdfbdioolem1 40563 itgcoscmulx 40605 itgiccshift 40616 itgperiod 40617 dirkercncflem2 40741 fourierdlem57 40800 fourierdlem58 40801 fourierdlem72 40815 fourierdlem73 40816 fourierdlem74 40817 fourierdlem75 40818 fourierdlem80 40823 fourierdlem94 40837 fourierdlem103 40846 fourierdlem104 40847 fourierdlem113 40856 |
Copyright terms: Public domain | W3C validator |