Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dvrdir Structured version   Visualization version   GIF version

Theorem dvrdir 30124
Description: Distributive law for the division operation of a ring. (Contributed by Thierry Arnoux, 30-Oct-2017.)
Hypotheses
Ref Expression
dvrdir.b 𝐵 = (Base‘𝑅)
dvrdir.u 𝑈 = (Unit‘𝑅)
dvrdir.p + = (+g𝑅)
dvrdir.t / = (/r𝑅)
Assertion
Ref Expression
dvrdir ((𝑅 ∈ Ring ∧ (𝑋𝐵𝑌𝐵𝑍𝑈)) → ((𝑋 + 𝑌) / 𝑍) = ((𝑋 / 𝑍) + (𝑌 / 𝑍)))

Proof of Theorem dvrdir
StepHypRef Expression
1 simpl 468 . . 3 ((𝑅 ∈ Ring ∧ (𝑋𝐵𝑌𝐵𝑍𝑈)) → 𝑅 ∈ Ring)
2 simpr1 1232 . . 3 ((𝑅 ∈ Ring ∧ (𝑋𝐵𝑌𝐵𝑍𝑈)) → 𝑋𝐵)
3 simpr2 1234 . . 3 ((𝑅 ∈ Ring ∧ (𝑋𝐵𝑌𝐵𝑍𝑈)) → 𝑌𝐵)
4 dvrdir.b . . . . 5 𝐵 = (Base‘𝑅)
5 dvrdir.u . . . . 5 𝑈 = (Unit‘𝑅)
64, 5unitss 18867 . . . 4 𝑈𝐵
7 simpr3 1236 . . . . 5 ((𝑅 ∈ Ring ∧ (𝑋𝐵𝑌𝐵𝑍𝑈)) → 𝑍𝑈)
8 eqid 2770 . . . . . 6 (invr𝑅) = (invr𝑅)
95, 8unitinvcl 18881 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑍𝑈) → ((invr𝑅)‘𝑍) ∈ 𝑈)
107, 9syldan 571 . . . 4 ((𝑅 ∈ Ring ∧ (𝑋𝐵𝑌𝐵𝑍𝑈)) → ((invr𝑅)‘𝑍) ∈ 𝑈)
116, 10sseldi 3748 . . 3 ((𝑅 ∈ Ring ∧ (𝑋𝐵𝑌𝐵𝑍𝑈)) → ((invr𝑅)‘𝑍) ∈ 𝐵)
12 dvrdir.p . . . 4 + = (+g𝑅)
13 eqid 2770 . . . 4 (.r𝑅) = (.r𝑅)
144, 12, 13ringdir 18774 . . 3 ((𝑅 ∈ Ring ∧ (𝑋𝐵𝑌𝐵 ∧ ((invr𝑅)‘𝑍) ∈ 𝐵)) → ((𝑋 + 𝑌)(.r𝑅)((invr𝑅)‘𝑍)) = ((𝑋(.r𝑅)((invr𝑅)‘𝑍)) + (𝑌(.r𝑅)((invr𝑅)‘𝑍))))
151, 2, 3, 11, 14syl13anc 1477 . 2 ((𝑅 ∈ Ring ∧ (𝑋𝐵𝑌𝐵𝑍𝑈)) → ((𝑋 + 𝑌)(.r𝑅)((invr𝑅)‘𝑍)) = ((𝑋(.r𝑅)((invr𝑅)‘𝑍)) + (𝑌(.r𝑅)((invr𝑅)‘𝑍))))
16 ringgrp 18759 . . . . 5 (𝑅 ∈ Ring → 𝑅 ∈ Grp)
1716adantr 466 . . . 4 ((𝑅 ∈ Ring ∧ (𝑋𝐵𝑌𝐵𝑍𝑈)) → 𝑅 ∈ Grp)
184, 12grpcl 17637 . . . 4 ((𝑅 ∈ Grp ∧ 𝑋𝐵𝑌𝐵) → (𝑋 + 𝑌) ∈ 𝐵)
1917, 2, 3, 18syl3anc 1475 . . 3 ((𝑅 ∈ Ring ∧ (𝑋𝐵𝑌𝐵𝑍𝑈)) → (𝑋 + 𝑌) ∈ 𝐵)
20 dvrdir.t . . . 4 / = (/r𝑅)
214, 13, 5, 8, 20dvrval 18892 . . 3 (((𝑋 + 𝑌) ∈ 𝐵𝑍𝑈) → ((𝑋 + 𝑌) / 𝑍) = ((𝑋 + 𝑌)(.r𝑅)((invr𝑅)‘𝑍)))
2219, 7, 21syl2anc 565 . 2 ((𝑅 ∈ Ring ∧ (𝑋𝐵𝑌𝐵𝑍𝑈)) → ((𝑋 + 𝑌) / 𝑍) = ((𝑋 + 𝑌)(.r𝑅)((invr𝑅)‘𝑍)))
234, 13, 5, 8, 20dvrval 18892 . . . 4 ((𝑋𝐵𝑍𝑈) → (𝑋 / 𝑍) = (𝑋(.r𝑅)((invr𝑅)‘𝑍)))
242, 7, 23syl2anc 565 . . 3 ((𝑅 ∈ Ring ∧ (𝑋𝐵𝑌𝐵𝑍𝑈)) → (𝑋 / 𝑍) = (𝑋(.r𝑅)((invr𝑅)‘𝑍)))
254, 13, 5, 8, 20dvrval 18892 . . . 4 ((𝑌𝐵𝑍𝑈) → (𝑌 / 𝑍) = (𝑌(.r𝑅)((invr𝑅)‘𝑍)))
263, 7, 25syl2anc 565 . . 3 ((𝑅 ∈ Ring ∧ (𝑋𝐵𝑌𝐵𝑍𝑈)) → (𝑌 / 𝑍) = (𝑌(.r𝑅)((invr𝑅)‘𝑍)))
2724, 26oveq12d 6810 . 2 ((𝑅 ∈ Ring ∧ (𝑋𝐵𝑌𝐵𝑍𝑈)) → ((𝑋 / 𝑍) + (𝑌 / 𝑍)) = ((𝑋(.r𝑅)((invr𝑅)‘𝑍)) + (𝑌(.r𝑅)((invr𝑅)‘𝑍))))
2815, 22, 273eqtr4d 2814 1 ((𝑅 ∈ Ring ∧ (𝑋𝐵𝑌𝐵𝑍𝑈)) → ((𝑋 + 𝑌) / 𝑍) = ((𝑋 / 𝑍) + (𝑌 / 𝑍)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 382  w3a 1070   = wceq 1630  wcel 2144  cfv 6031  (class class class)co 6792  Basecbs 16063  +gcplusg 16148  .rcmulr 16149  Grpcgrp 17629  Ringcrg 18754  Unitcui 18846  invrcinvr 18878  /rcdvr 18889
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1869  ax-4 1884  ax-5 1990  ax-6 2056  ax-7 2092  ax-8 2146  ax-9 2153  ax-10 2173  ax-11 2189  ax-12 2202  ax-13 2407  ax-ext 2750  ax-rep 4902  ax-sep 4912  ax-nul 4920  ax-pow 4971  ax-pr 5034  ax-un 7095  ax-cnex 10193  ax-resscn 10194  ax-1cn 10195  ax-icn 10196  ax-addcl 10197  ax-addrcl 10198  ax-mulcl 10199  ax-mulrcl 10200  ax-mulcom 10201  ax-addass 10202  ax-mulass 10203  ax-distr 10204  ax-i2m1 10205  ax-1ne0 10206  ax-1rid 10207  ax-rnegex 10208  ax-rrecex 10209  ax-cnre 10210  ax-pre-lttri 10211  ax-pre-lttrn 10212  ax-pre-ltadd 10213  ax-pre-mulgt0 10214
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 827  df-3or 1071  df-3an 1072  df-tru 1633  df-ex 1852  df-nf 1857  df-sb 2049  df-eu 2621  df-mo 2622  df-clab 2757  df-cleq 2763  df-clel 2766  df-nfc 2901  df-ne 2943  df-nel 3046  df-ral 3065  df-rex 3066  df-reu 3067  df-rmo 3068  df-rab 3069  df-v 3351  df-sbc 3586  df-csb 3681  df-dif 3724  df-un 3726  df-in 3728  df-ss 3735  df-pss 3737  df-nul 4062  df-if 4224  df-pw 4297  df-sn 4315  df-pr 4317  df-tp 4319  df-op 4321  df-uni 4573  df-iun 4654  df-br 4785  df-opab 4845  df-mpt 4862  df-tr 4885  df-id 5157  df-eprel 5162  df-po 5170  df-so 5171  df-fr 5208  df-we 5210  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-pred 5823  df-ord 5869  df-on 5870  df-lim 5871  df-suc 5872  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039  df-riota 6753  df-ov 6795  df-oprab 6796  df-mpt2 6797  df-om 7212  df-1st 7314  df-2nd 7315  df-tpos 7503  df-wrecs 7558  df-recs 7620  df-rdg 7658  df-er 7895  df-en 8109  df-dom 8110  df-sdom 8111  df-pnf 10277  df-mnf 10278  df-xr 10279  df-ltxr 10280  df-le 10281  df-sub 10469  df-neg 10470  df-nn 11222  df-2 11280  df-3 11281  df-ndx 16066  df-slot 16067  df-base 16069  df-sets 16070  df-ress 16071  df-plusg 16161  df-mulr 16162  df-0g 16309  df-mgm 17449  df-sgrp 17491  df-mnd 17502  df-grp 17632  df-minusg 17633  df-mgp 18697  df-ur 18709  df-ring 18756  df-oppr 18830  df-dvdsr 18848  df-unit 18849  df-invr 18879  df-dvr 18890
This theorem is referenced by:  qqhghm  30366  qqhrhm  30367
  Copyright terms: Public domain W3C validator