![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dvrass | Structured version Visualization version GIF version |
Description: An associative law for division. (divass 10916 analog.) (Contributed by Mario Carneiro, 4-Dec-2014.) |
Ref | Expression |
---|---|
dvrass.b | ⊢ 𝐵 = (Base‘𝑅) |
dvrass.o | ⊢ 𝑈 = (Unit‘𝑅) |
dvrass.d | ⊢ / = (/r‘𝑅) |
dvrass.t | ⊢ · = (.r‘𝑅) |
Ref | Expression |
---|---|
dvrass | ⊢ ((𝑅 ∈ Ring ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝑈)) → ((𝑋 · 𝑌) / 𝑍) = (𝑋 · (𝑌 / 𝑍))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl 474 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝑈)) → 𝑅 ∈ Ring) | |
2 | simpr1 1234 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝑈)) → 𝑋 ∈ 𝐵) | |
3 | simpr2 1236 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝑈)) → 𝑌 ∈ 𝐵) | |
4 | simpr3 1238 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝑈)) → 𝑍 ∈ 𝑈) | |
5 | dvrass.o | . . . . 5 ⊢ 𝑈 = (Unit‘𝑅) | |
6 | eqid 2761 | . . . . 5 ⊢ (invr‘𝑅) = (invr‘𝑅) | |
7 | dvrass.b | . . . . 5 ⊢ 𝐵 = (Base‘𝑅) | |
8 | 5, 6, 7 | ringinvcl 18897 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝑍 ∈ 𝑈) → ((invr‘𝑅)‘𝑍) ∈ 𝐵) |
9 | 1, 4, 8 | syl2anc 696 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝑈)) → ((invr‘𝑅)‘𝑍) ∈ 𝐵) |
10 | dvrass.t | . . . 4 ⊢ · = (.r‘𝑅) | |
11 | 7, 10 | ringass 18785 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ ((invr‘𝑅)‘𝑍) ∈ 𝐵)) → ((𝑋 · 𝑌) · ((invr‘𝑅)‘𝑍)) = (𝑋 · (𝑌 · ((invr‘𝑅)‘𝑍)))) |
12 | 1, 2, 3, 9, 11 | syl13anc 1479 | . 2 ⊢ ((𝑅 ∈ Ring ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝑈)) → ((𝑋 · 𝑌) · ((invr‘𝑅)‘𝑍)) = (𝑋 · (𝑌 · ((invr‘𝑅)‘𝑍)))) |
13 | 7, 10 | ringcl 18782 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 · 𝑌) ∈ 𝐵) |
14 | 13 | 3adant3r3 1200 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝑈)) → (𝑋 · 𝑌) ∈ 𝐵) |
15 | dvrass.d | . . . 4 ⊢ / = (/r‘𝑅) | |
16 | 7, 10, 5, 6, 15 | dvrval 18906 | . . 3 ⊢ (((𝑋 · 𝑌) ∈ 𝐵 ∧ 𝑍 ∈ 𝑈) → ((𝑋 · 𝑌) / 𝑍) = ((𝑋 · 𝑌) · ((invr‘𝑅)‘𝑍))) |
17 | 14, 4, 16 | syl2anc 696 | . 2 ⊢ ((𝑅 ∈ Ring ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝑈)) → ((𝑋 · 𝑌) / 𝑍) = ((𝑋 · 𝑌) · ((invr‘𝑅)‘𝑍))) |
18 | 7, 10, 5, 6, 15 | dvrval 18906 | . . . 4 ⊢ ((𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝑈) → (𝑌 / 𝑍) = (𝑌 · ((invr‘𝑅)‘𝑍))) |
19 | 3, 4, 18 | syl2anc 696 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝑈)) → (𝑌 / 𝑍) = (𝑌 · ((invr‘𝑅)‘𝑍))) |
20 | 19 | oveq2d 6831 | . 2 ⊢ ((𝑅 ∈ Ring ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝑈)) → (𝑋 · (𝑌 / 𝑍)) = (𝑋 · (𝑌 · ((invr‘𝑅)‘𝑍)))) |
21 | 12, 17, 20 | 3eqtr4d 2805 | 1 ⊢ ((𝑅 ∈ Ring ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝑈)) → ((𝑋 · 𝑌) / 𝑍) = (𝑋 · (𝑌 / 𝑍))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 ∧ w3a 1072 = wceq 1632 ∈ wcel 2140 ‘cfv 6050 (class class class)co 6815 Basecbs 16080 .rcmulr 16165 Ringcrg 18768 Unitcui 18860 invrcinvr 18892 /rcdvr 18903 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1989 ax-6 2055 ax-7 2091 ax-8 2142 ax-9 2149 ax-10 2169 ax-11 2184 ax-12 2197 ax-13 2392 ax-ext 2741 ax-rep 4924 ax-sep 4934 ax-nul 4942 ax-pow 4993 ax-pr 5056 ax-un 7116 ax-cnex 10205 ax-resscn 10206 ax-1cn 10207 ax-icn 10208 ax-addcl 10209 ax-addrcl 10210 ax-mulcl 10211 ax-mulrcl 10212 ax-mulcom 10213 ax-addass 10214 ax-mulass 10215 ax-distr 10216 ax-i2m1 10217 ax-1ne0 10218 ax-1rid 10219 ax-rnegex 10220 ax-rrecex 10221 ax-cnre 10222 ax-pre-lttri 10223 ax-pre-lttrn 10224 ax-pre-ltadd 10225 ax-pre-mulgt0 10226 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2048 df-eu 2612 df-mo 2613 df-clab 2748 df-cleq 2754 df-clel 2757 df-nfc 2892 df-ne 2934 df-nel 3037 df-ral 3056 df-rex 3057 df-reu 3058 df-rmo 3059 df-rab 3060 df-v 3343 df-sbc 3578 df-csb 3676 df-dif 3719 df-un 3721 df-in 3723 df-ss 3730 df-pss 3732 df-nul 4060 df-if 4232 df-pw 4305 df-sn 4323 df-pr 4325 df-tp 4327 df-op 4329 df-uni 4590 df-iun 4675 df-br 4806 df-opab 4866 df-mpt 4883 df-tr 4906 df-id 5175 df-eprel 5180 df-po 5188 df-so 5189 df-fr 5226 df-we 5228 df-xp 5273 df-rel 5274 df-cnv 5275 df-co 5276 df-dm 5277 df-rn 5278 df-res 5279 df-ima 5280 df-pred 5842 df-ord 5888 df-on 5889 df-lim 5890 df-suc 5891 df-iota 6013 df-fun 6052 df-fn 6053 df-f 6054 df-f1 6055 df-fo 6056 df-f1o 6057 df-fv 6058 df-riota 6776 df-ov 6818 df-oprab 6819 df-mpt2 6820 df-om 7233 df-1st 7335 df-2nd 7336 df-tpos 7523 df-wrecs 7578 df-recs 7639 df-rdg 7677 df-er 7914 df-en 8125 df-dom 8126 df-sdom 8127 df-pnf 10289 df-mnf 10290 df-xr 10291 df-ltxr 10292 df-le 10293 df-sub 10481 df-neg 10482 df-nn 11234 df-2 11292 df-3 11293 df-ndx 16083 df-slot 16084 df-base 16086 df-sets 16087 df-ress 16088 df-plusg 16177 df-mulr 16178 df-0g 16325 df-mgm 17464 df-sgrp 17506 df-mnd 17517 df-grp 17647 df-minusg 17648 df-mgp 18711 df-ur 18723 df-ring 18770 df-oppr 18844 df-dvdsr 18862 df-unit 18863 df-invr 18893 df-dvr 18904 |
This theorem is referenced by: dvrcan3 18913 irredrmul 18928 dvrcan5 30124 |
Copyright terms: Public domain | W3C validator |