MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvntaylp Structured version   Visualization version   GIF version

Theorem dvntaylp 24324
Description: The 𝑀-th derivative of the Taylor polynomial is the Taylor polynomial of the 𝑀-th derivative of the function. (Contributed by Mario Carneiro, 1-Jan-2017.)
Hypotheses
Ref Expression
dvntaylp.s (𝜑𝑆 ∈ {ℝ, ℂ})
dvntaylp.f (𝜑𝐹:𝐴⟶ℂ)
dvntaylp.a (𝜑𝐴𝑆)
dvntaylp.m (𝜑𝑀 ∈ ℕ0)
dvntaylp.n (𝜑𝑁 ∈ ℕ0)
dvntaylp.b (𝜑𝐵 ∈ dom ((𝑆 D𝑛 𝐹)‘(𝑁 + 𝑀)))
Assertion
Ref Expression
dvntaylp (𝜑 → ((ℂ D𝑛 ((𝑁 + 𝑀)(𝑆 Tayl 𝐹)𝐵))‘𝑀) = (𝑁(𝑆 Tayl ((𝑆 D𝑛 𝐹)‘𝑀))𝐵))

Proof of Theorem dvntaylp
Dummy variables 𝑚 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dvntaylp.m . . . . 5 (𝜑𝑀 ∈ ℕ0)
2 nn0uz 11915 . . . . 5 0 = (ℤ‘0)
31, 2syl6eleq 2849 . . . 4 (𝜑𝑀 ∈ (ℤ‘0))
4 eluzfz2b 12543 . . . 4 (𝑀 ∈ (ℤ‘0) ↔ 𝑀 ∈ (0...𝑀))
53, 4sylib 208 . . 3 (𝜑𝑀 ∈ (0...𝑀))
6 fveq2 6352 . . . . . 6 (𝑚 = 0 → ((ℂ D𝑛 ((𝑁 + 𝑀)(𝑆 Tayl 𝐹)𝐵))‘𝑚) = ((ℂ D𝑛 ((𝑁 + 𝑀)(𝑆 Tayl 𝐹)𝐵))‘0))
7 fveq2 6352 . . . . . . . 8 (𝑚 = 0 → ((𝑆 D𝑛 𝐹)‘𝑚) = ((𝑆 D𝑛 𝐹)‘0))
87oveq2d 6829 . . . . . . 7 (𝑚 = 0 → (𝑆 Tayl ((𝑆 D𝑛 𝐹)‘𝑚)) = (𝑆 Tayl ((𝑆 D𝑛 𝐹)‘0)))
9 oveq2 6821 . . . . . . . 8 (𝑚 = 0 → (𝑀𝑚) = (𝑀 − 0))
109oveq2d 6829 . . . . . . 7 (𝑚 = 0 → (𝑁 + (𝑀𝑚)) = (𝑁 + (𝑀 − 0)))
11 eqidd 2761 . . . . . . 7 (𝑚 = 0 → 𝐵 = 𝐵)
128, 10, 11oveq123d 6834 . . . . . 6 (𝑚 = 0 → ((𝑁 + (𝑀𝑚))(𝑆 Tayl ((𝑆 D𝑛 𝐹)‘𝑚))𝐵) = ((𝑁 + (𝑀 − 0))(𝑆 Tayl ((𝑆 D𝑛 𝐹)‘0))𝐵))
136, 12eqeq12d 2775 . . . . 5 (𝑚 = 0 → (((ℂ D𝑛 ((𝑁 + 𝑀)(𝑆 Tayl 𝐹)𝐵))‘𝑚) = ((𝑁 + (𝑀𝑚))(𝑆 Tayl ((𝑆 D𝑛 𝐹)‘𝑚))𝐵) ↔ ((ℂ D𝑛 ((𝑁 + 𝑀)(𝑆 Tayl 𝐹)𝐵))‘0) = ((𝑁 + (𝑀 − 0))(𝑆 Tayl ((𝑆 D𝑛 𝐹)‘0))𝐵)))
1413imbi2d 329 . . . 4 (𝑚 = 0 → ((𝜑 → ((ℂ D𝑛 ((𝑁 + 𝑀)(𝑆 Tayl 𝐹)𝐵))‘𝑚) = ((𝑁 + (𝑀𝑚))(𝑆 Tayl ((𝑆 D𝑛 𝐹)‘𝑚))𝐵)) ↔ (𝜑 → ((ℂ D𝑛 ((𝑁 + 𝑀)(𝑆 Tayl 𝐹)𝐵))‘0) = ((𝑁 + (𝑀 − 0))(𝑆 Tayl ((𝑆 D𝑛 𝐹)‘0))𝐵))))
15 fveq2 6352 . . . . . 6 (𝑚 = 𝑛 → ((ℂ D𝑛 ((𝑁 + 𝑀)(𝑆 Tayl 𝐹)𝐵))‘𝑚) = ((ℂ D𝑛 ((𝑁 + 𝑀)(𝑆 Tayl 𝐹)𝐵))‘𝑛))
16 fveq2 6352 . . . . . . . 8 (𝑚 = 𝑛 → ((𝑆 D𝑛 𝐹)‘𝑚) = ((𝑆 D𝑛 𝐹)‘𝑛))
1716oveq2d 6829 . . . . . . 7 (𝑚 = 𝑛 → (𝑆 Tayl ((𝑆 D𝑛 𝐹)‘𝑚)) = (𝑆 Tayl ((𝑆 D𝑛 𝐹)‘𝑛)))
18 oveq2 6821 . . . . . . . 8 (𝑚 = 𝑛 → (𝑀𝑚) = (𝑀𝑛))
1918oveq2d 6829 . . . . . . 7 (𝑚 = 𝑛 → (𝑁 + (𝑀𝑚)) = (𝑁 + (𝑀𝑛)))
20 eqidd 2761 . . . . . . 7 (𝑚 = 𝑛𝐵 = 𝐵)
2117, 19, 20oveq123d 6834 . . . . . 6 (𝑚 = 𝑛 → ((𝑁 + (𝑀𝑚))(𝑆 Tayl ((𝑆 D𝑛 𝐹)‘𝑚))𝐵) = ((𝑁 + (𝑀𝑛))(𝑆 Tayl ((𝑆 D𝑛 𝐹)‘𝑛))𝐵))
2215, 21eqeq12d 2775 . . . . 5 (𝑚 = 𝑛 → (((ℂ D𝑛 ((𝑁 + 𝑀)(𝑆 Tayl 𝐹)𝐵))‘𝑚) = ((𝑁 + (𝑀𝑚))(𝑆 Tayl ((𝑆 D𝑛 𝐹)‘𝑚))𝐵) ↔ ((ℂ D𝑛 ((𝑁 + 𝑀)(𝑆 Tayl 𝐹)𝐵))‘𝑛) = ((𝑁 + (𝑀𝑛))(𝑆 Tayl ((𝑆 D𝑛 𝐹)‘𝑛))𝐵)))
2322imbi2d 329 . . . 4 (𝑚 = 𝑛 → ((𝜑 → ((ℂ D𝑛 ((𝑁 + 𝑀)(𝑆 Tayl 𝐹)𝐵))‘𝑚) = ((𝑁 + (𝑀𝑚))(𝑆 Tayl ((𝑆 D𝑛 𝐹)‘𝑚))𝐵)) ↔ (𝜑 → ((ℂ D𝑛 ((𝑁 + 𝑀)(𝑆 Tayl 𝐹)𝐵))‘𝑛) = ((𝑁 + (𝑀𝑛))(𝑆 Tayl ((𝑆 D𝑛 𝐹)‘𝑛))𝐵))))
24 fveq2 6352 . . . . . 6 (𝑚 = (𝑛 + 1) → ((ℂ D𝑛 ((𝑁 + 𝑀)(𝑆 Tayl 𝐹)𝐵))‘𝑚) = ((ℂ D𝑛 ((𝑁 + 𝑀)(𝑆 Tayl 𝐹)𝐵))‘(𝑛 + 1)))
25 fveq2 6352 . . . . . . . 8 (𝑚 = (𝑛 + 1) → ((𝑆 D𝑛 𝐹)‘𝑚) = ((𝑆 D𝑛 𝐹)‘(𝑛 + 1)))
2625oveq2d 6829 . . . . . . 7 (𝑚 = (𝑛 + 1) → (𝑆 Tayl ((𝑆 D𝑛 𝐹)‘𝑚)) = (𝑆 Tayl ((𝑆 D𝑛 𝐹)‘(𝑛 + 1))))
27 oveq2 6821 . . . . . . . 8 (𝑚 = (𝑛 + 1) → (𝑀𝑚) = (𝑀 − (𝑛 + 1)))
2827oveq2d 6829 . . . . . . 7 (𝑚 = (𝑛 + 1) → (𝑁 + (𝑀𝑚)) = (𝑁 + (𝑀 − (𝑛 + 1))))
29 eqidd 2761 . . . . . . 7 (𝑚 = (𝑛 + 1) → 𝐵 = 𝐵)
3026, 28, 29oveq123d 6834 . . . . . 6 (𝑚 = (𝑛 + 1) → ((𝑁 + (𝑀𝑚))(𝑆 Tayl ((𝑆 D𝑛 𝐹)‘𝑚))𝐵) = ((𝑁 + (𝑀 − (𝑛 + 1)))(𝑆 Tayl ((𝑆 D𝑛 𝐹)‘(𝑛 + 1)))𝐵))
3124, 30eqeq12d 2775 . . . . 5 (𝑚 = (𝑛 + 1) → (((ℂ D𝑛 ((𝑁 + 𝑀)(𝑆 Tayl 𝐹)𝐵))‘𝑚) = ((𝑁 + (𝑀𝑚))(𝑆 Tayl ((𝑆 D𝑛 𝐹)‘𝑚))𝐵) ↔ ((ℂ D𝑛 ((𝑁 + 𝑀)(𝑆 Tayl 𝐹)𝐵))‘(𝑛 + 1)) = ((𝑁 + (𝑀 − (𝑛 + 1)))(𝑆 Tayl ((𝑆 D𝑛 𝐹)‘(𝑛 + 1)))𝐵)))
3231imbi2d 329 . . . 4 (𝑚 = (𝑛 + 1) → ((𝜑 → ((ℂ D𝑛 ((𝑁 + 𝑀)(𝑆 Tayl 𝐹)𝐵))‘𝑚) = ((𝑁 + (𝑀𝑚))(𝑆 Tayl ((𝑆 D𝑛 𝐹)‘𝑚))𝐵)) ↔ (𝜑 → ((ℂ D𝑛 ((𝑁 + 𝑀)(𝑆 Tayl 𝐹)𝐵))‘(𝑛 + 1)) = ((𝑁 + (𝑀 − (𝑛 + 1)))(𝑆 Tayl ((𝑆 D𝑛 𝐹)‘(𝑛 + 1)))𝐵))))
33 fveq2 6352 . . . . . 6 (𝑚 = 𝑀 → ((ℂ D𝑛 ((𝑁 + 𝑀)(𝑆 Tayl 𝐹)𝐵))‘𝑚) = ((ℂ D𝑛 ((𝑁 + 𝑀)(𝑆 Tayl 𝐹)𝐵))‘𝑀))
34 fveq2 6352 . . . . . . . 8 (𝑚 = 𝑀 → ((𝑆 D𝑛 𝐹)‘𝑚) = ((𝑆 D𝑛 𝐹)‘𝑀))
3534oveq2d 6829 . . . . . . 7 (𝑚 = 𝑀 → (𝑆 Tayl ((𝑆 D𝑛 𝐹)‘𝑚)) = (𝑆 Tayl ((𝑆 D𝑛 𝐹)‘𝑀)))
36 oveq2 6821 . . . . . . . 8 (𝑚 = 𝑀 → (𝑀𝑚) = (𝑀𝑀))
3736oveq2d 6829 . . . . . . 7 (𝑚 = 𝑀 → (𝑁 + (𝑀𝑚)) = (𝑁 + (𝑀𝑀)))
38 eqidd 2761 . . . . . . 7 (𝑚 = 𝑀𝐵 = 𝐵)
3935, 37, 38oveq123d 6834 . . . . . 6 (𝑚 = 𝑀 → ((𝑁 + (𝑀𝑚))(𝑆 Tayl ((𝑆 D𝑛 𝐹)‘𝑚))𝐵) = ((𝑁 + (𝑀𝑀))(𝑆 Tayl ((𝑆 D𝑛 𝐹)‘𝑀))𝐵))
4033, 39eqeq12d 2775 . . . . 5 (𝑚 = 𝑀 → (((ℂ D𝑛 ((𝑁 + 𝑀)(𝑆 Tayl 𝐹)𝐵))‘𝑚) = ((𝑁 + (𝑀𝑚))(𝑆 Tayl ((𝑆 D𝑛 𝐹)‘𝑚))𝐵) ↔ ((ℂ D𝑛 ((𝑁 + 𝑀)(𝑆 Tayl 𝐹)𝐵))‘𝑀) = ((𝑁 + (𝑀𝑀))(𝑆 Tayl ((𝑆 D𝑛 𝐹)‘𝑀))𝐵)))
4140imbi2d 329 . . . 4 (𝑚 = 𝑀 → ((𝜑 → ((ℂ D𝑛 ((𝑁 + 𝑀)(𝑆 Tayl 𝐹)𝐵))‘𝑚) = ((𝑁 + (𝑀𝑚))(𝑆 Tayl ((𝑆 D𝑛 𝐹)‘𝑚))𝐵)) ↔ (𝜑 → ((ℂ D𝑛 ((𝑁 + 𝑀)(𝑆 Tayl 𝐹)𝐵))‘𝑀) = ((𝑁 + (𝑀𝑀))(𝑆 Tayl ((𝑆 D𝑛 𝐹)‘𝑀))𝐵))))
42 ssid 3765 . . . . . . . 8 ℂ ⊆ ℂ
4342a1i 11 . . . . . . 7 (𝜑 → ℂ ⊆ ℂ)
44 mapsspm 8057 . . . . . . . 8 (ℂ ↑𝑚 ℂ) ⊆ (ℂ ↑pm ℂ)
45 dvntaylp.s . . . . . . . . . 10 (𝜑𝑆 ∈ {ℝ, ℂ})
46 dvntaylp.f . . . . . . . . . 10 (𝜑𝐹:𝐴⟶ℂ)
47 dvntaylp.a . . . . . . . . . 10 (𝜑𝐴𝑆)
48 dvntaylp.n . . . . . . . . . . 11 (𝜑𝑁 ∈ ℕ0)
4948, 1nn0addcld 11547 . . . . . . . . . 10 (𝜑 → (𝑁 + 𝑀) ∈ ℕ0)
50 dvntaylp.b . . . . . . . . . 10 (𝜑𝐵 ∈ dom ((𝑆 D𝑛 𝐹)‘(𝑁 + 𝑀)))
51 eqid 2760 . . . . . . . . . 10 ((𝑁 + 𝑀)(𝑆 Tayl 𝐹)𝐵) = ((𝑁 + 𝑀)(𝑆 Tayl 𝐹)𝐵)
5245, 46, 47, 49, 50, 51taylpf 24319 . . . . . . . . 9 (𝜑 → ((𝑁 + 𝑀)(𝑆 Tayl 𝐹)𝐵):ℂ⟶ℂ)
53 cnex 10209 . . . . . . . . . 10 ℂ ∈ V
5453, 53elmap 8052 . . . . . . . . 9 (((𝑁 + 𝑀)(𝑆 Tayl 𝐹)𝐵) ∈ (ℂ ↑𝑚 ℂ) ↔ ((𝑁 + 𝑀)(𝑆 Tayl 𝐹)𝐵):ℂ⟶ℂ)
5552, 54sylibr 224 . . . . . . . 8 (𝜑 → ((𝑁 + 𝑀)(𝑆 Tayl 𝐹)𝐵) ∈ (ℂ ↑𝑚 ℂ))
5644, 55sseldi 3742 . . . . . . 7 (𝜑 → ((𝑁 + 𝑀)(𝑆 Tayl 𝐹)𝐵) ∈ (ℂ ↑pm ℂ))
57 dvn0 23886 . . . . . . 7 ((ℂ ⊆ ℂ ∧ ((𝑁 + 𝑀)(𝑆 Tayl 𝐹)𝐵) ∈ (ℂ ↑pm ℂ)) → ((ℂ D𝑛 ((𝑁 + 𝑀)(𝑆 Tayl 𝐹)𝐵))‘0) = ((𝑁 + 𝑀)(𝑆 Tayl 𝐹)𝐵))
5843, 56, 57syl2anc 696 . . . . . 6 (𝜑 → ((ℂ D𝑛 ((𝑁 + 𝑀)(𝑆 Tayl 𝐹)𝐵))‘0) = ((𝑁 + 𝑀)(𝑆 Tayl 𝐹)𝐵))
59 recnprss 23867 . . . . . . . . . 10 (𝑆 ∈ {ℝ, ℂ} → 𝑆 ⊆ ℂ)
6045, 59syl 17 . . . . . . . . 9 (𝜑𝑆 ⊆ ℂ)
6153a1i 11 . . . . . . . . . 10 (𝜑 → ℂ ∈ V)
62 elpm2r 8041 . . . . . . . . . 10 (((ℂ ∈ V ∧ 𝑆 ∈ {ℝ, ℂ}) ∧ (𝐹:𝐴⟶ℂ ∧ 𝐴𝑆)) → 𝐹 ∈ (ℂ ↑pm 𝑆))
6361, 45, 46, 47, 62syl22anc 1478 . . . . . . . . 9 (𝜑𝐹 ∈ (ℂ ↑pm 𝑆))
64 dvn0 23886 . . . . . . . . 9 ((𝑆 ⊆ ℂ ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) → ((𝑆 D𝑛 𝐹)‘0) = 𝐹)
6560, 63, 64syl2anc 696 . . . . . . . 8 (𝜑 → ((𝑆 D𝑛 𝐹)‘0) = 𝐹)
6665oveq2d 6829 . . . . . . 7 (𝜑 → (𝑆 Tayl ((𝑆 D𝑛 𝐹)‘0)) = (𝑆 Tayl 𝐹))
671nn0cnd 11545 . . . . . . . . 9 (𝜑𝑀 ∈ ℂ)
6867subid1d 10573 . . . . . . . 8 (𝜑 → (𝑀 − 0) = 𝑀)
6968oveq2d 6829 . . . . . . 7 (𝜑 → (𝑁 + (𝑀 − 0)) = (𝑁 + 𝑀))
70 eqidd 2761 . . . . . . 7 (𝜑𝐵 = 𝐵)
7166, 69, 70oveq123d 6834 . . . . . 6 (𝜑 → ((𝑁 + (𝑀 − 0))(𝑆 Tayl ((𝑆 D𝑛 𝐹)‘0))𝐵) = ((𝑁 + 𝑀)(𝑆 Tayl 𝐹)𝐵))
7258, 71eqtr4d 2797 . . . . 5 (𝜑 → ((ℂ D𝑛 ((𝑁 + 𝑀)(𝑆 Tayl 𝐹)𝐵))‘0) = ((𝑁 + (𝑀 − 0))(𝑆 Tayl ((𝑆 D𝑛 𝐹)‘0))𝐵))
7372a1i 11 . . . 4 (𝑀 ∈ (ℤ‘0) → (𝜑 → ((ℂ D𝑛 ((𝑁 + 𝑀)(𝑆 Tayl 𝐹)𝐵))‘0) = ((𝑁 + (𝑀 − 0))(𝑆 Tayl ((𝑆 D𝑛 𝐹)‘0))𝐵)))
74 oveq2 6821 . . . . . . 7 (((ℂ D𝑛 ((𝑁 + 𝑀)(𝑆 Tayl 𝐹)𝐵))‘𝑛) = ((𝑁 + (𝑀𝑛))(𝑆 Tayl ((𝑆 D𝑛 𝐹)‘𝑛))𝐵) → (ℂ D ((ℂ D𝑛 ((𝑁 + 𝑀)(𝑆 Tayl 𝐹)𝐵))‘𝑛)) = (ℂ D ((𝑁 + (𝑀𝑛))(𝑆 Tayl ((𝑆 D𝑛 𝐹)‘𝑛))𝐵)))
7542a1i 11 . . . . . . . . 9 ((𝜑𝑛 ∈ (0..^𝑀)) → ℂ ⊆ ℂ)
7656adantr 472 . . . . . . . . 9 ((𝜑𝑛 ∈ (0..^𝑀)) → ((𝑁 + 𝑀)(𝑆 Tayl 𝐹)𝐵) ∈ (ℂ ↑pm ℂ))
77 elfzouz 12668 . . . . . . . . . . 11 (𝑛 ∈ (0..^𝑀) → 𝑛 ∈ (ℤ‘0))
7877adantl 473 . . . . . . . . . 10 ((𝜑𝑛 ∈ (0..^𝑀)) → 𝑛 ∈ (ℤ‘0))
7978, 2syl6eleqr 2850 . . . . . . . . 9 ((𝜑𝑛 ∈ (0..^𝑀)) → 𝑛 ∈ ℕ0)
80 dvnp1 23887 . . . . . . . . 9 ((ℂ ⊆ ℂ ∧ ((𝑁 + 𝑀)(𝑆 Tayl 𝐹)𝐵) ∈ (ℂ ↑pm ℂ) ∧ 𝑛 ∈ ℕ0) → ((ℂ D𝑛 ((𝑁 + 𝑀)(𝑆 Tayl 𝐹)𝐵))‘(𝑛 + 1)) = (ℂ D ((ℂ D𝑛 ((𝑁 + 𝑀)(𝑆 Tayl 𝐹)𝐵))‘𝑛)))
8175, 76, 79, 80syl3anc 1477 . . . . . . . 8 ((𝜑𝑛 ∈ (0..^𝑀)) → ((ℂ D𝑛 ((𝑁 + 𝑀)(𝑆 Tayl 𝐹)𝐵))‘(𝑛 + 1)) = (ℂ D ((ℂ D𝑛 ((𝑁 + 𝑀)(𝑆 Tayl 𝐹)𝐵))‘𝑛)))
8245adantr 472 . . . . . . . . . 10 ((𝜑𝑛 ∈ (0..^𝑀)) → 𝑆 ∈ {ℝ, ℂ})
8363adantr 472 . . . . . . . . . . 11 ((𝜑𝑛 ∈ (0..^𝑀)) → 𝐹 ∈ (ℂ ↑pm 𝑆))
84 dvnf 23889 . . . . . . . . . . 11 ((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm 𝑆) ∧ 𝑛 ∈ ℕ0) → ((𝑆 D𝑛 𝐹)‘𝑛):dom ((𝑆 D𝑛 𝐹)‘𝑛)⟶ℂ)
8582, 83, 79, 84syl3anc 1477 . . . . . . . . . 10 ((𝜑𝑛 ∈ (0..^𝑀)) → ((𝑆 D𝑛 𝐹)‘𝑛):dom ((𝑆 D𝑛 𝐹)‘𝑛)⟶ℂ)
86 dvnbss 23890 . . . . . . . . . . . . 13 ((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm 𝑆) ∧ 𝑛 ∈ ℕ0) → dom ((𝑆 D𝑛 𝐹)‘𝑛) ⊆ dom 𝐹)
8782, 83, 79, 86syl3anc 1477 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ (0..^𝑀)) → dom ((𝑆 D𝑛 𝐹)‘𝑛) ⊆ dom 𝐹)
88 fdm 6212 . . . . . . . . . . . . . 14 (𝐹:𝐴⟶ℂ → dom 𝐹 = 𝐴)
8946, 88syl 17 . . . . . . . . . . . . 13 (𝜑 → dom 𝐹 = 𝐴)
9089adantr 472 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ (0..^𝑀)) → dom 𝐹 = 𝐴)
9187, 90sseqtrd 3782 . . . . . . . . . . 11 ((𝜑𝑛 ∈ (0..^𝑀)) → dom ((𝑆 D𝑛 𝐹)‘𝑛) ⊆ 𝐴)
9247adantr 472 . . . . . . . . . . 11 ((𝜑𝑛 ∈ (0..^𝑀)) → 𝐴𝑆)
9391, 92sstrd 3754 . . . . . . . . . 10 ((𝜑𝑛 ∈ (0..^𝑀)) → dom ((𝑆 D𝑛 𝐹)‘𝑛) ⊆ 𝑆)
9448adantr 472 . . . . . . . . . . 11 ((𝜑𝑛 ∈ (0..^𝑀)) → 𝑁 ∈ ℕ0)
95 fzofzp1 12759 . . . . . . . . . . . . 13 (𝑛 ∈ (0..^𝑀) → (𝑛 + 1) ∈ (0...𝑀))
9695adantl 473 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ (0..^𝑀)) → (𝑛 + 1) ∈ (0...𝑀))
97 fznn0sub 12566 . . . . . . . . . . . 12 ((𝑛 + 1) ∈ (0...𝑀) → (𝑀 − (𝑛 + 1)) ∈ ℕ0)
9896, 97syl 17 . . . . . . . . . . 11 ((𝜑𝑛 ∈ (0..^𝑀)) → (𝑀 − (𝑛 + 1)) ∈ ℕ0)
9994, 98nn0addcld 11547 . . . . . . . . . 10 ((𝜑𝑛 ∈ (0..^𝑀)) → (𝑁 + (𝑀 − (𝑛 + 1))) ∈ ℕ0)
10050adantr 472 . . . . . . . . . . 11 ((𝜑𝑛 ∈ (0..^𝑀)) → 𝐵 ∈ dom ((𝑆 D𝑛 𝐹)‘(𝑁 + 𝑀)))
101 elfzofz 12679 . . . . . . . . . . . . . . . . 17 (𝑛 ∈ (0..^𝑀) → 𝑛 ∈ (0...𝑀))
102101adantl 473 . . . . . . . . . . . . . . . 16 ((𝜑𝑛 ∈ (0..^𝑀)) → 𝑛 ∈ (0...𝑀))
103 fznn0sub 12566 . . . . . . . . . . . . . . . 16 (𝑛 ∈ (0...𝑀) → (𝑀𝑛) ∈ ℕ0)
104102, 103syl 17 . . . . . . . . . . . . . . 15 ((𝜑𝑛 ∈ (0..^𝑀)) → (𝑀𝑛) ∈ ℕ0)
10594, 104nn0addcld 11547 . . . . . . . . . . . . . 14 ((𝜑𝑛 ∈ (0..^𝑀)) → (𝑁 + (𝑀𝑛)) ∈ ℕ0)
106 dvnadd 23891 . . . . . . . . . . . . . 14 (((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) ∧ (𝑛 ∈ ℕ0 ∧ (𝑁 + (𝑀𝑛)) ∈ ℕ0)) → ((𝑆 D𝑛 ((𝑆 D𝑛 𝐹)‘𝑛))‘(𝑁 + (𝑀𝑛))) = ((𝑆 D𝑛 𝐹)‘(𝑛 + (𝑁 + (𝑀𝑛)))))
10782, 83, 79, 105, 106syl22anc 1478 . . . . . . . . . . . . 13 ((𝜑𝑛 ∈ (0..^𝑀)) → ((𝑆 D𝑛 ((𝑆 D𝑛 𝐹)‘𝑛))‘(𝑁 + (𝑀𝑛))) = ((𝑆 D𝑛 𝐹)‘(𝑛 + (𝑁 + (𝑀𝑛)))))
10848nn0cnd 11545 . . . . . . . . . . . . . . . . 17 (𝜑𝑁 ∈ ℂ)
109108adantr 472 . . . . . . . . . . . . . . . 16 ((𝜑𝑛 ∈ (0..^𝑀)) → 𝑁 ∈ ℂ)
11098nn0cnd 11545 . . . . . . . . . . . . . . . 16 ((𝜑𝑛 ∈ (0..^𝑀)) → (𝑀 − (𝑛 + 1)) ∈ ℂ)
111 1cnd 10248 . . . . . . . . . . . . . . . 16 ((𝜑𝑛 ∈ (0..^𝑀)) → 1 ∈ ℂ)
112109, 110, 111addassd 10254 . . . . . . . . . . . . . . 15 ((𝜑𝑛 ∈ (0..^𝑀)) → ((𝑁 + (𝑀 − (𝑛 + 1))) + 1) = (𝑁 + ((𝑀 − (𝑛 + 1)) + 1)))
11367adantr 472 . . . . . . . . . . . . . . . . 17 ((𝜑𝑛 ∈ (0..^𝑀)) → 𝑀 ∈ ℂ)
11479nn0cnd 11545 . . . . . . . . . . . . . . . . 17 ((𝜑𝑛 ∈ (0..^𝑀)) → 𝑛 ∈ ℂ)
115113, 114, 111nppcan2d 10610 . . . . . . . . . . . . . . . 16 ((𝜑𝑛 ∈ (0..^𝑀)) → ((𝑀 − (𝑛 + 1)) + 1) = (𝑀𝑛))
116115oveq2d 6829 . . . . . . . . . . . . . . 15 ((𝜑𝑛 ∈ (0..^𝑀)) → (𝑁 + ((𝑀 − (𝑛 + 1)) + 1)) = (𝑁 + (𝑀𝑛)))
117112, 116eqtrd 2794 . . . . . . . . . . . . . 14 ((𝜑𝑛 ∈ (0..^𝑀)) → ((𝑁 + (𝑀 − (𝑛 + 1))) + 1) = (𝑁 + (𝑀𝑛)))
118117fveq2d 6356 . . . . . . . . . . . . 13 ((𝜑𝑛 ∈ (0..^𝑀)) → ((𝑆 D𝑛 ((𝑆 D𝑛 𝐹)‘𝑛))‘((𝑁 + (𝑀 − (𝑛 + 1))) + 1)) = ((𝑆 D𝑛 ((𝑆 D𝑛 𝐹)‘𝑛))‘(𝑁 + (𝑀𝑛))))
119114, 113pncan3d 10587 . . . . . . . . . . . . . . . 16 ((𝜑𝑛 ∈ (0..^𝑀)) → (𝑛 + (𝑀𝑛)) = 𝑀)
120119oveq2d 6829 . . . . . . . . . . . . . . 15 ((𝜑𝑛 ∈ (0..^𝑀)) → (𝑁 + (𝑛 + (𝑀𝑛))) = (𝑁 + 𝑀))
121113, 114subcld 10584 . . . . . . . . . . . . . . . 16 ((𝜑𝑛 ∈ (0..^𝑀)) → (𝑀𝑛) ∈ ℂ)
122109, 114, 121add12d 10454 . . . . . . . . . . . . . . 15 ((𝜑𝑛 ∈ (0..^𝑀)) → (𝑁 + (𝑛 + (𝑀𝑛))) = (𝑛 + (𝑁 + (𝑀𝑛))))
123120, 122eqtr3d 2796 . . . . . . . . . . . . . 14 ((𝜑𝑛 ∈ (0..^𝑀)) → (𝑁 + 𝑀) = (𝑛 + (𝑁 + (𝑀𝑛))))
124123fveq2d 6356 . . . . . . . . . . . . 13 ((𝜑𝑛 ∈ (0..^𝑀)) → ((𝑆 D𝑛 𝐹)‘(𝑁 + 𝑀)) = ((𝑆 D𝑛 𝐹)‘(𝑛 + (𝑁 + (𝑀𝑛)))))
125107, 118, 1243eqtr4d 2804 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ (0..^𝑀)) → ((𝑆 D𝑛 ((𝑆 D𝑛 𝐹)‘𝑛))‘((𝑁 + (𝑀 − (𝑛 + 1))) + 1)) = ((𝑆 D𝑛 𝐹)‘(𝑁 + 𝑀)))
126125dmeqd 5481 . . . . . . . . . . 11 ((𝜑𝑛 ∈ (0..^𝑀)) → dom ((𝑆 D𝑛 ((𝑆 D𝑛 𝐹)‘𝑛))‘((𝑁 + (𝑀 − (𝑛 + 1))) + 1)) = dom ((𝑆 D𝑛 𝐹)‘(𝑁 + 𝑀)))
127100, 126eleqtrrd 2842 . . . . . . . . . 10 ((𝜑𝑛 ∈ (0..^𝑀)) → 𝐵 ∈ dom ((𝑆 D𝑛 ((𝑆 D𝑛 𝐹)‘𝑛))‘((𝑁 + (𝑀 − (𝑛 + 1))) + 1)))
12882, 85, 93, 99, 127dvtaylp 24323 . . . . . . . . 9 ((𝜑𝑛 ∈ (0..^𝑀)) → (ℂ D (((𝑁 + (𝑀 − (𝑛 + 1))) + 1)(𝑆 Tayl ((𝑆 D𝑛 𝐹)‘𝑛))𝐵)) = ((𝑁 + (𝑀 − (𝑛 + 1)))(𝑆 Tayl (𝑆 D ((𝑆 D𝑛 𝐹)‘𝑛)))𝐵))
129117oveq1d 6828 . . . . . . . . . 10 ((𝜑𝑛 ∈ (0..^𝑀)) → (((𝑁 + (𝑀 − (𝑛 + 1))) + 1)(𝑆 Tayl ((𝑆 D𝑛 𝐹)‘𝑛))𝐵) = ((𝑁 + (𝑀𝑛))(𝑆 Tayl ((𝑆 D𝑛 𝐹)‘𝑛))𝐵))
130129oveq2d 6829 . . . . . . . . 9 ((𝜑𝑛 ∈ (0..^𝑀)) → (ℂ D (((𝑁 + (𝑀 − (𝑛 + 1))) + 1)(𝑆 Tayl ((𝑆 D𝑛 𝐹)‘𝑛))𝐵)) = (ℂ D ((𝑁 + (𝑀𝑛))(𝑆 Tayl ((𝑆 D𝑛 𝐹)‘𝑛))𝐵)))
13160adantr 472 . . . . . . . . . . . . 13 ((𝜑𝑛 ∈ (0..^𝑀)) → 𝑆 ⊆ ℂ)
132 dvnp1 23887 . . . . . . . . . . . . 13 ((𝑆 ⊆ ℂ ∧ 𝐹 ∈ (ℂ ↑pm 𝑆) ∧ 𝑛 ∈ ℕ0) → ((𝑆 D𝑛 𝐹)‘(𝑛 + 1)) = (𝑆 D ((𝑆 D𝑛 𝐹)‘𝑛)))
133131, 83, 79, 132syl3anc 1477 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ (0..^𝑀)) → ((𝑆 D𝑛 𝐹)‘(𝑛 + 1)) = (𝑆 D ((𝑆 D𝑛 𝐹)‘𝑛)))
134133oveq2d 6829 . . . . . . . . . . 11 ((𝜑𝑛 ∈ (0..^𝑀)) → (𝑆 Tayl ((𝑆 D𝑛 𝐹)‘(𝑛 + 1))) = (𝑆 Tayl (𝑆 D ((𝑆 D𝑛 𝐹)‘𝑛))))
135134eqcomd 2766 . . . . . . . . . 10 ((𝜑𝑛 ∈ (0..^𝑀)) → (𝑆 Tayl (𝑆 D ((𝑆 D𝑛 𝐹)‘𝑛))) = (𝑆 Tayl ((𝑆 D𝑛 𝐹)‘(𝑛 + 1))))
136135oveqd 6830 . . . . . . . . 9 ((𝜑𝑛 ∈ (0..^𝑀)) → ((𝑁 + (𝑀 − (𝑛 + 1)))(𝑆 Tayl (𝑆 D ((𝑆 D𝑛 𝐹)‘𝑛)))𝐵) = ((𝑁 + (𝑀 − (𝑛 + 1)))(𝑆 Tayl ((𝑆 D𝑛 𝐹)‘(𝑛 + 1)))𝐵))
137128, 130, 1363eqtr3rd 2803 . . . . . . . 8 ((𝜑𝑛 ∈ (0..^𝑀)) → ((𝑁 + (𝑀 − (𝑛 + 1)))(𝑆 Tayl ((𝑆 D𝑛 𝐹)‘(𝑛 + 1)))𝐵) = (ℂ D ((𝑁 + (𝑀𝑛))(𝑆 Tayl ((𝑆 D𝑛 𝐹)‘𝑛))𝐵)))
13881, 137eqeq12d 2775 . . . . . . 7 ((𝜑𝑛 ∈ (0..^𝑀)) → (((ℂ D𝑛 ((𝑁 + 𝑀)(𝑆 Tayl 𝐹)𝐵))‘(𝑛 + 1)) = ((𝑁 + (𝑀 − (𝑛 + 1)))(𝑆 Tayl ((𝑆 D𝑛 𝐹)‘(𝑛 + 1)))𝐵) ↔ (ℂ D ((ℂ D𝑛 ((𝑁 + 𝑀)(𝑆 Tayl 𝐹)𝐵))‘𝑛)) = (ℂ D ((𝑁 + (𝑀𝑛))(𝑆 Tayl ((𝑆 D𝑛 𝐹)‘𝑛))𝐵))))
13974, 138syl5ibr 236 . . . . . 6 ((𝜑𝑛 ∈ (0..^𝑀)) → (((ℂ D𝑛 ((𝑁 + 𝑀)(𝑆 Tayl 𝐹)𝐵))‘𝑛) = ((𝑁 + (𝑀𝑛))(𝑆 Tayl ((𝑆 D𝑛 𝐹)‘𝑛))𝐵) → ((ℂ D𝑛 ((𝑁 + 𝑀)(𝑆 Tayl 𝐹)𝐵))‘(𝑛 + 1)) = ((𝑁 + (𝑀 − (𝑛 + 1)))(𝑆 Tayl ((𝑆 D𝑛 𝐹)‘(𝑛 + 1)))𝐵)))
140139expcom 450 . . . . 5 (𝑛 ∈ (0..^𝑀) → (𝜑 → (((ℂ D𝑛 ((𝑁 + 𝑀)(𝑆 Tayl 𝐹)𝐵))‘𝑛) = ((𝑁 + (𝑀𝑛))(𝑆 Tayl ((𝑆 D𝑛 𝐹)‘𝑛))𝐵) → ((ℂ D𝑛 ((𝑁 + 𝑀)(𝑆 Tayl 𝐹)𝐵))‘(𝑛 + 1)) = ((𝑁 + (𝑀 − (𝑛 + 1)))(𝑆 Tayl ((𝑆 D𝑛 𝐹)‘(𝑛 + 1)))𝐵))))
141140a2d 29 . . . 4 (𝑛 ∈ (0..^𝑀) → ((𝜑 → ((ℂ D𝑛 ((𝑁 + 𝑀)(𝑆 Tayl 𝐹)𝐵))‘𝑛) = ((𝑁 + (𝑀𝑛))(𝑆 Tayl ((𝑆 D𝑛 𝐹)‘𝑛))𝐵)) → (𝜑 → ((ℂ D𝑛 ((𝑁 + 𝑀)(𝑆 Tayl 𝐹)𝐵))‘(𝑛 + 1)) = ((𝑁 + (𝑀 − (𝑛 + 1)))(𝑆 Tayl ((𝑆 D𝑛 𝐹)‘(𝑛 + 1)))𝐵))))
14214, 23, 32, 41, 73, 141fzind2 12780 . . 3 (𝑀 ∈ (0...𝑀) → (𝜑 → ((ℂ D𝑛 ((𝑁 + 𝑀)(𝑆 Tayl 𝐹)𝐵))‘𝑀) = ((𝑁 + (𝑀𝑀))(𝑆 Tayl ((𝑆 D𝑛 𝐹)‘𝑀))𝐵)))
1435, 142mpcom 38 . 2 (𝜑 → ((ℂ D𝑛 ((𝑁 + 𝑀)(𝑆 Tayl 𝐹)𝐵))‘𝑀) = ((𝑁 + (𝑀𝑀))(𝑆 Tayl ((𝑆 D𝑛 𝐹)‘𝑀))𝐵))
14467subidd 10572 . . . . 5 (𝜑 → (𝑀𝑀) = 0)
145144oveq2d 6829 . . . 4 (𝜑 → (𝑁 + (𝑀𝑀)) = (𝑁 + 0))
146108addid1d 10428 . . . 4 (𝜑 → (𝑁 + 0) = 𝑁)
147145, 146eqtrd 2794 . . 3 (𝜑 → (𝑁 + (𝑀𝑀)) = 𝑁)
148147oveq1d 6828 . 2 (𝜑 → ((𝑁 + (𝑀𝑀))(𝑆 Tayl ((𝑆 D𝑛 𝐹)‘𝑀))𝐵) = (𝑁(𝑆 Tayl ((𝑆 D𝑛 𝐹)‘𝑀))𝐵))
149143, 148eqtrd 2794 1 (𝜑 → ((ℂ D𝑛 ((𝑁 + 𝑀)(𝑆 Tayl 𝐹)𝐵))‘𝑀) = (𝑁(𝑆 Tayl ((𝑆 D𝑛 𝐹)‘𝑀))𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383   = wceq 1632  wcel 2139  Vcvv 3340  wss 3715  {cpr 4323  dom cdm 5266  wf 6045  cfv 6049  (class class class)co 6813  𝑚 cmap 8023  pm cpm 8024  cc 10126  cr 10127  0cc0 10128  1c1 10129   + caddc 10131  cmin 10458  0cn0 11484  cuz 11879  ...cfz 12519  ..^cfzo 12659   D cdv 23826   D𝑛 cdvn 23827   Tayl ctayl 24306
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-rep 4923  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7114  ax-inf2 8711  ax-cnex 10184  ax-resscn 10185  ax-1cn 10186  ax-icn 10187  ax-addcl 10188  ax-addrcl 10189  ax-mulcl 10190  ax-mulrcl 10191  ax-mulcom 10192  ax-addass 10193  ax-mulass 10194  ax-distr 10195  ax-i2m1 10196  ax-1ne0 10197  ax-1rid 10198  ax-rnegex 10199  ax-rrecex 10200  ax-cnre 10201  ax-pre-lttri 10202  ax-pre-lttrn 10203  ax-pre-ltadd 10204  ax-pre-mulgt0 10205  ax-pre-sup 10206  ax-addf 10207  ax-mulf 10208
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-fal 1638  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-nel 3036  df-ral 3055  df-rex 3056  df-reu 3057  df-rmo 3058  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-pss 3731  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-tp 4326  df-op 4328  df-uni 4589  df-int 4628  df-iun 4674  df-iin 4675  df-br 4805  df-opab 4865  df-mpt 4882  df-tr 4905  df-id 5174  df-eprel 5179  df-po 5187  df-so 5188  df-fr 5225  df-se 5226  df-we 5227  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-pred 5841  df-ord 5887  df-on 5888  df-lim 5889  df-suc 5890  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-isom 6058  df-riota 6774  df-ov 6816  df-oprab 6817  df-mpt2 6818  df-of 7062  df-om 7231  df-1st 7333  df-2nd 7334  df-supp 7464  df-wrecs 7576  df-recs 7637  df-rdg 7675  df-1o 7729  df-2o 7730  df-oadd 7733  df-er 7911  df-map 8025  df-pm 8026  df-ixp 8075  df-en 8122  df-dom 8123  df-sdom 8124  df-fin 8125  df-fsupp 8441  df-fi 8482  df-sup 8513  df-inf 8514  df-oi 8580  df-card 8955  df-cda 9182  df-pnf 10268  df-mnf 10269  df-xr 10270  df-ltxr 10271  df-le 10272  df-sub 10460  df-neg 10461  df-div 10877  df-nn 11213  df-2 11271  df-3 11272  df-4 11273  df-5 11274  df-6 11275  df-7 11276  df-8 11277  df-9 11278  df-n0 11485  df-z 11570  df-dec 11686  df-uz 11880  df-q 11982  df-rp 12026  df-xneg 12139  df-xadd 12140  df-xmul 12141  df-icc 12375  df-fz 12520  df-fzo 12660  df-seq 12996  df-exp 13055  df-fac 13255  df-hash 13312  df-cj 14038  df-re 14039  df-im 14040  df-sqrt 14174  df-abs 14175  df-clim 14418  df-sum 14616  df-struct 16061  df-ndx 16062  df-slot 16063  df-base 16065  df-sets 16066  df-ress 16067  df-plusg 16156  df-mulr 16157  df-starv 16158  df-sca 16159  df-vsca 16160  df-ip 16161  df-tset 16162  df-ple 16163  df-ds 16166  df-unif 16167  df-hom 16168  df-cco 16169  df-rest 16285  df-topn 16286  df-0g 16304  df-gsum 16305  df-topgen 16306  df-pt 16307  df-prds 16310  df-xrs 16364  df-qtop 16369  df-imas 16370  df-xps 16372  df-mre 16448  df-mrc 16449  df-acs 16451  df-mgm 17443  df-sgrp 17485  df-mnd 17496  df-submnd 17537  df-grp 17626  df-minusg 17627  df-mulg 17742  df-cntz 17950  df-cmn 18395  df-abl 18396  df-mgp 18690  df-ur 18702  df-ring 18749  df-cring 18750  df-psmet 19940  df-xmet 19941  df-met 19942  df-bl 19943  df-mopn 19944  df-fbas 19945  df-fg 19946  df-cnfld 19949  df-top 20901  df-topon 20918  df-topsp 20939  df-bases 20952  df-cld 21025  df-ntr 21026  df-cls 21027  df-nei 21104  df-lp 21142  df-perf 21143  df-cn 21233  df-cnp 21234  df-haus 21321  df-tx 21567  df-hmeo 21760  df-fil 21851  df-fm 21943  df-flim 21944  df-flf 21945  df-tsms 22131  df-xms 22326  df-ms 22327  df-tms 22328  df-cncf 22882  df-limc 23829  df-dv 23830  df-dvn 23831  df-tayl 24308
This theorem is referenced by:  dvntaylp0  24325  taylthlem1  24326
  Copyright terms: Public domain W3C validator