![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dvnp1 | Structured version Visualization version GIF version |
Description: Successor iterated derivative. (Contributed by Stefan O'Rear, 15-Nov-2014.) (Revised by Mario Carneiro, 11-Feb-2015.) |
Ref | Expression |
---|---|
dvnp1 | ⊢ ((𝑆 ⊆ ℂ ∧ 𝐹 ∈ (ℂ ↑pm 𝑆) ∧ 𝑁 ∈ ℕ0) → ((𝑆 D𝑛 𝐹)‘(𝑁 + 1)) = (𝑆 D ((𝑆 D𝑛 𝐹)‘𝑁))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp3 1132 | . . . . 5 ⊢ ((𝑆 ⊆ ℂ ∧ 𝐹 ∈ (ℂ ↑pm 𝑆) ∧ 𝑁 ∈ ℕ0) → 𝑁 ∈ ℕ0) | |
2 | nn0uz 11924 | . . . . 5 ⊢ ℕ0 = (ℤ≥‘0) | |
3 | 1, 2 | syl6eleq 2860 | . . . 4 ⊢ ((𝑆 ⊆ ℂ ∧ 𝐹 ∈ (ℂ ↑pm 𝑆) ∧ 𝑁 ∈ ℕ0) → 𝑁 ∈ (ℤ≥‘0)) |
4 | seqp1 13023 | . . . 4 ⊢ (𝑁 ∈ (ℤ≥‘0) → (seq0(((𝑥 ∈ V ↦ (𝑆 D 𝑥)) ∘ 1st ), (ℕ0 × {𝐹}))‘(𝑁 + 1)) = ((seq0(((𝑥 ∈ V ↦ (𝑆 D 𝑥)) ∘ 1st ), (ℕ0 × {𝐹}))‘𝑁)((𝑥 ∈ V ↦ (𝑆 D 𝑥)) ∘ 1st )((ℕ0 × {𝐹})‘(𝑁 + 1)))) | |
5 | 3, 4 | syl 17 | . . 3 ⊢ ((𝑆 ⊆ ℂ ∧ 𝐹 ∈ (ℂ ↑pm 𝑆) ∧ 𝑁 ∈ ℕ0) → (seq0(((𝑥 ∈ V ↦ (𝑆 D 𝑥)) ∘ 1st ), (ℕ0 × {𝐹}))‘(𝑁 + 1)) = ((seq0(((𝑥 ∈ V ↦ (𝑆 D 𝑥)) ∘ 1st ), (ℕ0 × {𝐹}))‘𝑁)((𝑥 ∈ V ↦ (𝑆 D 𝑥)) ∘ 1st )((ℕ0 × {𝐹})‘(𝑁 + 1)))) |
6 | fvex 6342 | . . . 4 ⊢ (seq0(((𝑥 ∈ V ↦ (𝑆 D 𝑥)) ∘ 1st ), (ℕ0 × {𝐹}))‘𝑁) ∈ V | |
7 | fvex 6342 | . . . 4 ⊢ ((ℕ0 × {𝐹})‘(𝑁 + 1)) ∈ V | |
8 | 6, 7 | algrflem 7437 | . . 3 ⊢ ((seq0(((𝑥 ∈ V ↦ (𝑆 D 𝑥)) ∘ 1st ), (ℕ0 × {𝐹}))‘𝑁)((𝑥 ∈ V ↦ (𝑆 D 𝑥)) ∘ 1st )((ℕ0 × {𝐹})‘(𝑁 + 1))) = ((𝑥 ∈ V ↦ (𝑆 D 𝑥))‘(seq0(((𝑥 ∈ V ↦ (𝑆 D 𝑥)) ∘ 1st ), (ℕ0 × {𝐹}))‘𝑁)) |
9 | 5, 8 | syl6eq 2821 | . 2 ⊢ ((𝑆 ⊆ ℂ ∧ 𝐹 ∈ (ℂ ↑pm 𝑆) ∧ 𝑁 ∈ ℕ0) → (seq0(((𝑥 ∈ V ↦ (𝑆 D 𝑥)) ∘ 1st ), (ℕ0 × {𝐹}))‘(𝑁 + 1)) = ((𝑥 ∈ V ↦ (𝑆 D 𝑥))‘(seq0(((𝑥 ∈ V ↦ (𝑆 D 𝑥)) ∘ 1st ), (ℕ0 × {𝐹}))‘𝑁))) |
10 | eqid 2771 | . . . . 5 ⊢ (𝑥 ∈ V ↦ (𝑆 D 𝑥)) = (𝑥 ∈ V ↦ (𝑆 D 𝑥)) | |
11 | 10 | dvnfval 23905 | . . . 4 ⊢ ((𝑆 ⊆ ℂ ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) → (𝑆 D𝑛 𝐹) = seq0(((𝑥 ∈ V ↦ (𝑆 D 𝑥)) ∘ 1st ), (ℕ0 × {𝐹}))) |
12 | 11 | 3adant3 1126 | . . 3 ⊢ ((𝑆 ⊆ ℂ ∧ 𝐹 ∈ (ℂ ↑pm 𝑆) ∧ 𝑁 ∈ ℕ0) → (𝑆 D𝑛 𝐹) = seq0(((𝑥 ∈ V ↦ (𝑆 D 𝑥)) ∘ 1st ), (ℕ0 × {𝐹}))) |
13 | 12 | fveq1d 6334 | . 2 ⊢ ((𝑆 ⊆ ℂ ∧ 𝐹 ∈ (ℂ ↑pm 𝑆) ∧ 𝑁 ∈ ℕ0) → ((𝑆 D𝑛 𝐹)‘(𝑁 + 1)) = (seq0(((𝑥 ∈ V ↦ (𝑆 D 𝑥)) ∘ 1st ), (ℕ0 × {𝐹}))‘(𝑁 + 1))) |
14 | fvex 6342 | . . . 4 ⊢ ((𝑆 D𝑛 𝐹)‘𝑁) ∈ V | |
15 | oveq2 6801 | . . . . 5 ⊢ (𝑥 = ((𝑆 D𝑛 𝐹)‘𝑁) → (𝑆 D 𝑥) = (𝑆 D ((𝑆 D𝑛 𝐹)‘𝑁))) | |
16 | ovex 6823 | . . . . 5 ⊢ (𝑆 D ((𝑆 D𝑛 𝐹)‘𝑁)) ∈ V | |
17 | 15, 10, 16 | fvmpt 6424 | . . . 4 ⊢ (((𝑆 D𝑛 𝐹)‘𝑁) ∈ V → ((𝑥 ∈ V ↦ (𝑆 D 𝑥))‘((𝑆 D𝑛 𝐹)‘𝑁)) = (𝑆 D ((𝑆 D𝑛 𝐹)‘𝑁))) |
18 | 14, 17 | ax-mp 5 | . . 3 ⊢ ((𝑥 ∈ V ↦ (𝑆 D 𝑥))‘((𝑆 D𝑛 𝐹)‘𝑁)) = (𝑆 D ((𝑆 D𝑛 𝐹)‘𝑁)) |
19 | 12 | fveq1d 6334 | . . . 4 ⊢ ((𝑆 ⊆ ℂ ∧ 𝐹 ∈ (ℂ ↑pm 𝑆) ∧ 𝑁 ∈ ℕ0) → ((𝑆 D𝑛 𝐹)‘𝑁) = (seq0(((𝑥 ∈ V ↦ (𝑆 D 𝑥)) ∘ 1st ), (ℕ0 × {𝐹}))‘𝑁)) |
20 | 19 | fveq2d 6336 | . . 3 ⊢ ((𝑆 ⊆ ℂ ∧ 𝐹 ∈ (ℂ ↑pm 𝑆) ∧ 𝑁 ∈ ℕ0) → ((𝑥 ∈ V ↦ (𝑆 D 𝑥))‘((𝑆 D𝑛 𝐹)‘𝑁)) = ((𝑥 ∈ V ↦ (𝑆 D 𝑥))‘(seq0(((𝑥 ∈ V ↦ (𝑆 D 𝑥)) ∘ 1st ), (ℕ0 × {𝐹}))‘𝑁))) |
21 | 18, 20 | syl5eqr 2819 | . 2 ⊢ ((𝑆 ⊆ ℂ ∧ 𝐹 ∈ (ℂ ↑pm 𝑆) ∧ 𝑁 ∈ ℕ0) → (𝑆 D ((𝑆 D𝑛 𝐹)‘𝑁)) = ((𝑥 ∈ V ↦ (𝑆 D 𝑥))‘(seq0(((𝑥 ∈ V ↦ (𝑆 D 𝑥)) ∘ 1st ), (ℕ0 × {𝐹}))‘𝑁))) |
22 | 9, 13, 21 | 3eqtr4d 2815 | 1 ⊢ ((𝑆 ⊆ ℂ ∧ 𝐹 ∈ (ℂ ↑pm 𝑆) ∧ 𝑁 ∈ ℕ0) → ((𝑆 D𝑛 𝐹)‘(𝑁 + 1)) = (𝑆 D ((𝑆 D𝑛 𝐹)‘𝑁))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1071 = wceq 1631 ∈ wcel 2145 Vcvv 3351 ⊆ wss 3723 {csn 4316 ↦ cmpt 4863 × cxp 5247 ∘ ccom 5253 ‘cfv 6031 (class class class)co 6793 1st c1st 7313 ↑pm cpm 8010 ℂcc 10136 0cc0 10138 1c1 10139 + caddc 10141 ℕ0cn0 11494 ℤ≥cuz 11888 seqcseq 13008 D cdv 23847 D𝑛 cdvn 23848 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 ax-5 1991 ax-6 2057 ax-7 2093 ax-8 2147 ax-9 2154 ax-10 2174 ax-11 2190 ax-12 2203 ax-13 2408 ax-ext 2751 ax-rep 4904 ax-sep 4915 ax-nul 4923 ax-pow 4974 ax-pr 5034 ax-un 7096 ax-inf2 8702 ax-cnex 10194 ax-resscn 10195 ax-1cn 10196 ax-icn 10197 ax-addcl 10198 ax-addrcl 10199 ax-mulcl 10200 ax-mulrcl 10201 ax-mulcom 10202 ax-addass 10203 ax-mulass 10204 ax-distr 10205 ax-i2m1 10206 ax-1ne0 10207 ax-1rid 10208 ax-rnegex 10209 ax-rrecex 10210 ax-cnre 10211 ax-pre-lttri 10212 ax-pre-lttrn 10213 ax-pre-ltadd 10214 ax-pre-mulgt0 10215 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 837 df-3or 1072 df-3an 1073 df-tru 1634 df-ex 1853 df-nf 1858 df-sb 2050 df-eu 2622 df-mo 2623 df-clab 2758 df-cleq 2764 df-clel 2767 df-nfc 2902 df-ne 2944 df-nel 3047 df-ral 3066 df-rex 3067 df-reu 3068 df-rab 3070 df-v 3353 df-sbc 3588 df-csb 3683 df-dif 3726 df-un 3728 df-in 3730 df-ss 3737 df-pss 3739 df-nul 4064 df-if 4226 df-pw 4299 df-sn 4317 df-pr 4319 df-tp 4321 df-op 4323 df-uni 4575 df-iun 4656 df-br 4787 df-opab 4847 df-mpt 4864 df-tr 4887 df-id 5157 df-eprel 5162 df-po 5170 df-so 5171 df-fr 5208 df-we 5210 df-xp 5255 df-rel 5256 df-cnv 5257 df-co 5258 df-dm 5259 df-rn 5260 df-res 5261 df-ima 5262 df-pred 5823 df-ord 5869 df-on 5870 df-lim 5871 df-suc 5872 df-iota 5994 df-fun 6033 df-fn 6034 df-f 6035 df-f1 6036 df-fo 6037 df-f1o 6038 df-fv 6039 df-riota 6754 df-ov 6796 df-oprab 6797 df-mpt2 6798 df-om 7213 df-1st 7315 df-2nd 7316 df-wrecs 7559 df-recs 7621 df-rdg 7659 df-er 7896 df-en 8110 df-dom 8111 df-sdom 8112 df-pnf 10278 df-mnf 10279 df-xr 10280 df-ltxr 10281 df-le 10282 df-sub 10470 df-neg 10471 df-nn 11223 df-n0 11495 df-z 11580 df-uz 11889 df-seq 13009 df-dvn 23852 |
This theorem is referenced by: dvn1 23909 dvnadd 23912 dvnres 23914 cpnord 23918 dvnfre 23935 c1lip2 23981 dvnply2 24262 dvntaylp 24345 taylthlem1 24347 taylthlem2 24348 dvnmptdivc 40671 dvnmptconst 40674 dvnxpaek 40675 dvnmul 40676 etransclem2 40970 |
Copyright terms: Public domain | W3C validator |