Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dvnmptdivc Structured version   Visualization version   GIF version

Theorem dvnmptdivc 40665
Description: Function-builder for iterated derivative, division rule for constant divisor. (Contributed by Glauco Siliprandi, 5-Apr-2020.)
Hypotheses
Ref Expression
dvnmptdivc.s (𝜑𝑆 ∈ {ℝ, ℂ})
dvnmptdivc.x (𝜑𝑋𝑆)
dvnmptdivc.a ((𝜑𝑥𝑋) → 𝐴 ∈ ℂ)
dvnmptdivc.b ((𝜑𝑥𝑋𝑛 ∈ (0...𝑀)) → 𝐵 ∈ ℂ)
dvnmptdivc.dvn ((𝜑𝑛 ∈ (0...𝑀)) → ((𝑆 D𝑛 (𝑥𝑋𝐴))‘𝑛) = (𝑥𝑋𝐵))
dvnmptdivc.c (𝜑𝐶 ∈ ℂ)
dvnmptdivc.cne0 (𝜑𝐶 ≠ 0)
dvnmptdivc.8 (𝜑𝑀 ∈ ℕ0)
Assertion
Ref Expression
dvnmptdivc ((𝜑𝑛 ∈ (0...𝑀)) → ((𝑆 D𝑛 (𝑥𝑋 ↦ (𝐴 / 𝐶)))‘𝑛) = (𝑥𝑋 ↦ (𝐵 / 𝐶)))
Distinct variable groups:   𝐴,𝑛   𝑥,𝐶   𝑛,𝑀,𝑥   𝑆,𝑛,𝑥   𝑛,𝑋,𝑥   𝜑,𝑛,𝑥
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑥,𝑛)   𝐶(𝑛)

Proof of Theorem dvnmptdivc
Dummy variables 𝑗 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpr 471 . 2 ((𝜑𝑛 ∈ (0...𝑀)) → 𝑛 ∈ (0...𝑀))
2 simpl 468 . 2 ((𝜑𝑛 ∈ (0...𝑀)) → 𝜑)
3 fveq2 6332 . . . . 5 (𝑘 = 0 → ((𝑆 D𝑛 (𝑥𝑋 ↦ (𝐴 / 𝐶)))‘𝑘) = ((𝑆 D𝑛 (𝑥𝑋 ↦ (𝐴 / 𝐶)))‘0))
4 csbeq1 3683 . . . . . . 7 (𝑘 = 0 → 𝑘 / 𝑛𝐵 = 0 / 𝑛𝐵)
54oveq1d 6807 . . . . . 6 (𝑘 = 0 → (𝑘 / 𝑛𝐵 / 𝐶) = (0 / 𝑛𝐵 / 𝐶))
65mpteq2dv 4877 . . . . 5 (𝑘 = 0 → (𝑥𝑋 ↦ (𝑘 / 𝑛𝐵 / 𝐶)) = (𝑥𝑋 ↦ (0 / 𝑛𝐵 / 𝐶)))
73, 6eqeq12d 2785 . . . 4 (𝑘 = 0 → (((𝑆 D𝑛 (𝑥𝑋 ↦ (𝐴 / 𝐶)))‘𝑘) = (𝑥𝑋 ↦ (𝑘 / 𝑛𝐵 / 𝐶)) ↔ ((𝑆 D𝑛 (𝑥𝑋 ↦ (𝐴 / 𝐶)))‘0) = (𝑥𝑋 ↦ (0 / 𝑛𝐵 / 𝐶))))
87imbi2d 329 . . 3 (𝑘 = 0 → ((𝜑 → ((𝑆 D𝑛 (𝑥𝑋 ↦ (𝐴 / 𝐶)))‘𝑘) = (𝑥𝑋 ↦ (𝑘 / 𝑛𝐵 / 𝐶))) ↔ (𝜑 → ((𝑆 D𝑛 (𝑥𝑋 ↦ (𝐴 / 𝐶)))‘0) = (𝑥𝑋 ↦ (0 / 𝑛𝐵 / 𝐶)))))
9 fveq2 6332 . . . . 5 (𝑘 = 𝑗 → ((𝑆 D𝑛 (𝑥𝑋 ↦ (𝐴 / 𝐶)))‘𝑘) = ((𝑆 D𝑛 (𝑥𝑋 ↦ (𝐴 / 𝐶)))‘𝑗))
10 csbeq1 3683 . . . . . . 7 (𝑘 = 𝑗𝑘 / 𝑛𝐵 = 𝑗 / 𝑛𝐵)
1110oveq1d 6807 . . . . . 6 (𝑘 = 𝑗 → (𝑘 / 𝑛𝐵 / 𝐶) = (𝑗 / 𝑛𝐵 / 𝐶))
1211mpteq2dv 4877 . . . . 5 (𝑘 = 𝑗 → (𝑥𝑋 ↦ (𝑘 / 𝑛𝐵 / 𝐶)) = (𝑥𝑋 ↦ (𝑗 / 𝑛𝐵 / 𝐶)))
139, 12eqeq12d 2785 . . . 4 (𝑘 = 𝑗 → (((𝑆 D𝑛 (𝑥𝑋 ↦ (𝐴 / 𝐶)))‘𝑘) = (𝑥𝑋 ↦ (𝑘 / 𝑛𝐵 / 𝐶)) ↔ ((𝑆 D𝑛 (𝑥𝑋 ↦ (𝐴 / 𝐶)))‘𝑗) = (𝑥𝑋 ↦ (𝑗 / 𝑛𝐵 / 𝐶))))
1413imbi2d 329 . . 3 (𝑘 = 𝑗 → ((𝜑 → ((𝑆 D𝑛 (𝑥𝑋 ↦ (𝐴 / 𝐶)))‘𝑘) = (𝑥𝑋 ↦ (𝑘 / 𝑛𝐵 / 𝐶))) ↔ (𝜑 → ((𝑆 D𝑛 (𝑥𝑋 ↦ (𝐴 / 𝐶)))‘𝑗) = (𝑥𝑋 ↦ (𝑗 / 𝑛𝐵 / 𝐶)))))
15 fveq2 6332 . . . . 5 (𝑘 = (𝑗 + 1) → ((𝑆 D𝑛 (𝑥𝑋 ↦ (𝐴 / 𝐶)))‘𝑘) = ((𝑆 D𝑛 (𝑥𝑋 ↦ (𝐴 / 𝐶)))‘(𝑗 + 1)))
16 csbeq1 3683 . . . . . . 7 (𝑘 = (𝑗 + 1) → 𝑘 / 𝑛𝐵 = (𝑗 + 1) / 𝑛𝐵)
1716oveq1d 6807 . . . . . 6 (𝑘 = (𝑗 + 1) → (𝑘 / 𝑛𝐵 / 𝐶) = ((𝑗 + 1) / 𝑛𝐵 / 𝐶))
1817mpteq2dv 4877 . . . . 5 (𝑘 = (𝑗 + 1) → (𝑥𝑋 ↦ (𝑘 / 𝑛𝐵 / 𝐶)) = (𝑥𝑋 ↦ ((𝑗 + 1) / 𝑛𝐵 / 𝐶)))
1915, 18eqeq12d 2785 . . . 4 (𝑘 = (𝑗 + 1) → (((𝑆 D𝑛 (𝑥𝑋 ↦ (𝐴 / 𝐶)))‘𝑘) = (𝑥𝑋 ↦ (𝑘 / 𝑛𝐵 / 𝐶)) ↔ ((𝑆 D𝑛 (𝑥𝑋 ↦ (𝐴 / 𝐶)))‘(𝑗 + 1)) = (𝑥𝑋 ↦ ((𝑗 + 1) / 𝑛𝐵 / 𝐶))))
2019imbi2d 329 . . 3 (𝑘 = (𝑗 + 1) → ((𝜑 → ((𝑆 D𝑛 (𝑥𝑋 ↦ (𝐴 / 𝐶)))‘𝑘) = (𝑥𝑋 ↦ (𝑘 / 𝑛𝐵 / 𝐶))) ↔ (𝜑 → ((𝑆 D𝑛 (𝑥𝑋 ↦ (𝐴 / 𝐶)))‘(𝑗 + 1)) = (𝑥𝑋 ↦ ((𝑗 + 1) / 𝑛𝐵 / 𝐶)))))
21 fveq2 6332 . . . . 5 (𝑘 = 𝑛 → ((𝑆 D𝑛 (𝑥𝑋 ↦ (𝐴 / 𝐶)))‘𝑘) = ((𝑆 D𝑛 (𝑥𝑋 ↦ (𝐴 / 𝐶)))‘𝑛))
22 csbeq1a 3689 . . . . . . . . 9 (𝑛 = 𝑘𝐵 = 𝑘 / 𝑛𝐵)
2322equcoms 2104 . . . . . . . 8 (𝑘 = 𝑛𝐵 = 𝑘 / 𝑛𝐵)
2423eqcomd 2776 . . . . . . 7 (𝑘 = 𝑛𝑘 / 𝑛𝐵 = 𝐵)
2524oveq1d 6807 . . . . . 6 (𝑘 = 𝑛 → (𝑘 / 𝑛𝐵 / 𝐶) = (𝐵 / 𝐶))
2625mpteq2dv 4877 . . . . 5 (𝑘 = 𝑛 → (𝑥𝑋 ↦ (𝑘 / 𝑛𝐵 / 𝐶)) = (𝑥𝑋 ↦ (𝐵 / 𝐶)))
2721, 26eqeq12d 2785 . . . 4 (𝑘 = 𝑛 → (((𝑆 D𝑛 (𝑥𝑋 ↦ (𝐴 / 𝐶)))‘𝑘) = (𝑥𝑋 ↦ (𝑘 / 𝑛𝐵 / 𝐶)) ↔ ((𝑆 D𝑛 (𝑥𝑋 ↦ (𝐴 / 𝐶)))‘𝑛) = (𝑥𝑋 ↦ (𝐵 / 𝐶))))
2827imbi2d 329 . . 3 (𝑘 = 𝑛 → ((𝜑 → ((𝑆 D𝑛 (𝑥𝑋 ↦ (𝐴 / 𝐶)))‘𝑘) = (𝑥𝑋 ↦ (𝑘 / 𝑛𝐵 / 𝐶))) ↔ (𝜑 → ((𝑆 D𝑛 (𝑥𝑋 ↦ (𝐴 / 𝐶)))‘𝑛) = (𝑥𝑋 ↦ (𝐵 / 𝐶)))))
29 dvnmptdivc.s . . . . . . 7 (𝜑𝑆 ∈ {ℝ, ℂ})
30 recnprss 23887 . . . . . . 7 (𝑆 ∈ {ℝ, ℂ} → 𝑆 ⊆ ℂ)
3129, 30syl 17 . . . . . 6 (𝜑𝑆 ⊆ ℂ)
32 cnex 10218 . . . . . . . 8 ℂ ∈ V
3332a1i 11 . . . . . . 7 (𝜑 → ℂ ∈ V)
34 dvnmptdivc.a . . . . . . . . 9 ((𝜑𝑥𝑋) → 𝐴 ∈ ℂ)
35 dvnmptdivc.c . . . . . . . . . 10 (𝜑𝐶 ∈ ℂ)
3635adantr 466 . . . . . . . . 9 ((𝜑𝑥𝑋) → 𝐶 ∈ ℂ)
37 dvnmptdivc.cne0 . . . . . . . . . 10 (𝜑𝐶 ≠ 0)
3837adantr 466 . . . . . . . . 9 ((𝜑𝑥𝑋) → 𝐶 ≠ 0)
3934, 36, 38divcld 11002 . . . . . . . 8 ((𝜑𝑥𝑋) → (𝐴 / 𝐶) ∈ ℂ)
40 eqid 2770 . . . . . . . 8 (𝑥𝑋 ↦ (𝐴 / 𝐶)) = (𝑥𝑋 ↦ (𝐴 / 𝐶))
4139, 40fmptd 6527 . . . . . . 7 (𝜑 → (𝑥𝑋 ↦ (𝐴 / 𝐶)):𝑋⟶ℂ)
42 dvnmptdivc.x . . . . . . 7 (𝜑𝑋𝑆)
43 elpm2r 8026 . . . . . . 7 (((ℂ ∈ V ∧ 𝑆 ∈ {ℝ, ℂ}) ∧ ((𝑥𝑋 ↦ (𝐴 / 𝐶)):𝑋⟶ℂ ∧ 𝑋𝑆)) → (𝑥𝑋 ↦ (𝐴 / 𝐶)) ∈ (ℂ ↑pm 𝑆))
4433, 29, 41, 42, 43syl22anc 1476 . . . . . 6 (𝜑 → (𝑥𝑋 ↦ (𝐴 / 𝐶)) ∈ (ℂ ↑pm 𝑆))
45 dvn0 23906 . . . . . 6 ((𝑆 ⊆ ℂ ∧ (𝑥𝑋 ↦ (𝐴 / 𝐶)) ∈ (ℂ ↑pm 𝑆)) → ((𝑆 D𝑛 (𝑥𝑋 ↦ (𝐴 / 𝐶)))‘0) = (𝑥𝑋 ↦ (𝐴 / 𝐶)))
4631, 44, 45syl2anc 565 . . . . 5 (𝜑 → ((𝑆 D𝑛 (𝑥𝑋 ↦ (𝐴 / 𝐶)))‘0) = (𝑥𝑋 ↦ (𝐴 / 𝐶)))
47 id 22 . . . . . . . . . . . 12 (𝜑𝜑)
48 dvnmptdivc.8 . . . . . . . . . . . . . 14 (𝜑𝑀 ∈ ℕ0)
49 nn0uz 11923 . . . . . . . . . . . . . 14 0 = (ℤ‘0)
5048, 49syl6eleq 2859 . . . . . . . . . . . . 13 (𝜑𝑀 ∈ (ℤ‘0))
51 eluzfz1 12554 . . . . . . . . . . . . 13 (𝑀 ∈ (ℤ‘0) → 0 ∈ (0...𝑀))
5250, 51syl 17 . . . . . . . . . . . 12 (𝜑 → 0 ∈ (0...𝑀))
53 nfv 1994 . . . . . . . . . . . . . 14 𝑛(𝜑 ∧ 0 ∈ (0...𝑀))
54 nfcv 2912 . . . . . . . . . . . . . . 15 𝑛((𝑆 D𝑛 (𝑥𝑋𝐴))‘0)
55 nfcv 2912 . . . . . . . . . . . . . . . 16 𝑛𝑋
56 nfcsb1v 3696 . . . . . . . . . . . . . . . 16 𝑛0 / 𝑛𝐵
5755, 56nfmpt 4878 . . . . . . . . . . . . . . 15 𝑛(𝑥𝑋0 / 𝑛𝐵)
5854, 57nfeq 2924 . . . . . . . . . . . . . 14 𝑛((𝑆 D𝑛 (𝑥𝑋𝐴))‘0) = (𝑥𝑋0 / 𝑛𝐵)
5953, 58nfim 1976 . . . . . . . . . . . . 13 𝑛((𝜑 ∧ 0 ∈ (0...𝑀)) → ((𝑆 D𝑛 (𝑥𝑋𝐴))‘0) = (𝑥𝑋0 / 𝑛𝐵))
60 c0ex 10235 . . . . . . . . . . . . 13 0 ∈ V
61 eleq1 2837 . . . . . . . . . . . . . . 15 (𝑛 = 0 → (𝑛 ∈ (0...𝑀) ↔ 0 ∈ (0...𝑀)))
6261anbi2d 606 . . . . . . . . . . . . . 14 (𝑛 = 0 → ((𝜑𝑛 ∈ (0...𝑀)) ↔ (𝜑 ∧ 0 ∈ (0...𝑀))))
63 fveq2 6332 . . . . . . . . . . . . . . 15 (𝑛 = 0 → ((𝑆 D𝑛 (𝑥𝑋𝐴))‘𝑛) = ((𝑆 D𝑛 (𝑥𝑋𝐴))‘0))
64 csbeq1a 3689 . . . . . . . . . . . . . . . 16 (𝑛 = 0 → 𝐵 = 0 / 𝑛𝐵)
6564mpteq2dv 4877 . . . . . . . . . . . . . . 15 (𝑛 = 0 → (𝑥𝑋𝐵) = (𝑥𝑋0 / 𝑛𝐵))
6663, 65eqeq12d 2785 . . . . . . . . . . . . . 14 (𝑛 = 0 → (((𝑆 D𝑛 (𝑥𝑋𝐴))‘𝑛) = (𝑥𝑋𝐵) ↔ ((𝑆 D𝑛 (𝑥𝑋𝐴))‘0) = (𝑥𝑋0 / 𝑛𝐵)))
6762, 66imbi12d 333 . . . . . . . . . . . . 13 (𝑛 = 0 → (((𝜑𝑛 ∈ (0...𝑀)) → ((𝑆 D𝑛 (𝑥𝑋𝐴))‘𝑛) = (𝑥𝑋𝐵)) ↔ ((𝜑 ∧ 0 ∈ (0...𝑀)) → ((𝑆 D𝑛 (𝑥𝑋𝐴))‘0) = (𝑥𝑋0 / 𝑛𝐵))))
68 dvnmptdivc.dvn . . . . . . . . . . . . 13 ((𝜑𝑛 ∈ (0...𝑀)) → ((𝑆 D𝑛 (𝑥𝑋𝐴))‘𝑛) = (𝑥𝑋𝐵))
6959, 60, 67, 68vtoclf 3407 . . . . . . . . . . . 12 ((𝜑 ∧ 0 ∈ (0...𝑀)) → ((𝑆 D𝑛 (𝑥𝑋𝐴))‘0) = (𝑥𝑋0 / 𝑛𝐵))
7047, 52, 69syl2anc 565 . . . . . . . . . . 11 (𝜑 → ((𝑆 D𝑛 (𝑥𝑋𝐴))‘0) = (𝑥𝑋0 / 𝑛𝐵))
7170fveq1d 6334 . . . . . . . . . 10 (𝜑 → (((𝑆 D𝑛 (𝑥𝑋𝐴))‘0)‘𝑥) = ((𝑥𝑋0 / 𝑛𝐵)‘𝑥))
7271adantr 466 . . . . . . . . 9 ((𝜑𝑥𝑋) → (((𝑆 D𝑛 (𝑥𝑋𝐴))‘0)‘𝑥) = ((𝑥𝑋0 / 𝑛𝐵)‘𝑥))
73 simpr 471 . . . . . . . . . 10 ((𝜑𝑥𝑋) → 𝑥𝑋)
74 simpl 468 . . . . . . . . . . 11 ((𝜑𝑥𝑋) → 𝜑)
7552adantr 466 . . . . . . . . . . 11 ((𝜑𝑥𝑋) → 0 ∈ (0...𝑀))
76 0re 10241 . . . . . . . . . . . 12 0 ∈ ℝ
77 nfcv 2912 . . . . . . . . . . . . 13 𝑛0
78 nfv 1994 . . . . . . . . . . . . . 14 𝑛(𝜑𝑥𝑋 ∧ 0 ∈ (0...𝑀))
79 nfcv 2912 . . . . . . . . . . . . . . 15 𝑛
8056, 79nfel 2925 . . . . . . . . . . . . . 14 𝑛0 / 𝑛𝐵 ∈ ℂ
8178, 80nfim 1976 . . . . . . . . . . . . 13 𝑛((𝜑𝑥𝑋 ∧ 0 ∈ (0...𝑀)) → 0 / 𝑛𝐵 ∈ ℂ)
82613anbi3d 1552 . . . . . . . . . . . . . 14 (𝑛 = 0 → ((𝜑𝑥𝑋𝑛 ∈ (0...𝑀)) ↔ (𝜑𝑥𝑋 ∧ 0 ∈ (0...𝑀))))
8364eleq1d 2834 . . . . . . . . . . . . . 14 (𝑛 = 0 → (𝐵 ∈ ℂ ↔ 0 / 𝑛𝐵 ∈ ℂ))
8482, 83imbi12d 333 . . . . . . . . . . . . 13 (𝑛 = 0 → (((𝜑𝑥𝑋𝑛 ∈ (0...𝑀)) → 𝐵 ∈ ℂ) ↔ ((𝜑𝑥𝑋 ∧ 0 ∈ (0...𝑀)) → 0 / 𝑛𝐵 ∈ ℂ)))
85 dvnmptdivc.b . . . . . . . . . . . . 13 ((𝜑𝑥𝑋𝑛 ∈ (0...𝑀)) → 𝐵 ∈ ℂ)
8677, 81, 84, 85vtoclgf 3413 . . . . . . . . . . . 12 (0 ∈ ℝ → ((𝜑𝑥𝑋 ∧ 0 ∈ (0...𝑀)) → 0 / 𝑛𝐵 ∈ ℂ))
8776, 86ax-mp 5 . . . . . . . . . . 11 ((𝜑𝑥𝑋 ∧ 0 ∈ (0...𝑀)) → 0 / 𝑛𝐵 ∈ ℂ)
8874, 73, 75, 87syl3anc 1475 . . . . . . . . . 10 ((𝜑𝑥𝑋) → 0 / 𝑛𝐵 ∈ ℂ)
89 eqid 2770 . . . . . . . . . . 11 (𝑥𝑋0 / 𝑛𝐵) = (𝑥𝑋0 / 𝑛𝐵)
9089fvmpt2 6433 . . . . . . . . . 10 ((𝑥𝑋0 / 𝑛𝐵 ∈ ℂ) → ((𝑥𝑋0 / 𝑛𝐵)‘𝑥) = 0 / 𝑛𝐵)
9173, 88, 90syl2anc 565 . . . . . . . . 9 ((𝜑𝑥𝑋) → ((𝑥𝑋0 / 𝑛𝐵)‘𝑥) = 0 / 𝑛𝐵)
9272, 91eqtr2d 2805 . . . . . . . 8 ((𝜑𝑥𝑋) → 0 / 𝑛𝐵 = (((𝑆 D𝑛 (𝑥𝑋𝐴))‘0)‘𝑥))
93 eqid 2770 . . . . . . . . . . . . 13 (𝑥𝑋𝐴) = (𝑥𝑋𝐴)
9434, 93fmptd 6527 . . . . . . . . . . . 12 (𝜑 → (𝑥𝑋𝐴):𝑋⟶ℂ)
95 elpm2r 8026 . . . . . . . . . . . 12 (((ℂ ∈ V ∧ 𝑆 ∈ {ℝ, ℂ}) ∧ ((𝑥𝑋𝐴):𝑋⟶ℂ ∧ 𝑋𝑆)) → (𝑥𝑋𝐴) ∈ (ℂ ↑pm 𝑆))
9633, 29, 94, 42, 95syl22anc 1476 . . . . . . . . . . 11 (𝜑 → (𝑥𝑋𝐴) ∈ (ℂ ↑pm 𝑆))
97 dvn0 23906 . . . . . . . . . . 11 ((𝑆 ⊆ ℂ ∧ (𝑥𝑋𝐴) ∈ (ℂ ↑pm 𝑆)) → ((𝑆 D𝑛 (𝑥𝑋𝐴))‘0) = (𝑥𝑋𝐴))
9831, 96, 97syl2anc 565 . . . . . . . . . 10 (𝜑 → ((𝑆 D𝑛 (𝑥𝑋𝐴))‘0) = (𝑥𝑋𝐴))
9998fveq1d 6334 . . . . . . . . 9 (𝜑 → (((𝑆 D𝑛 (𝑥𝑋𝐴))‘0)‘𝑥) = ((𝑥𝑋𝐴)‘𝑥))
10099adantr 466 . . . . . . . 8 ((𝜑𝑥𝑋) → (((𝑆 D𝑛 (𝑥𝑋𝐴))‘0)‘𝑥) = ((𝑥𝑋𝐴)‘𝑥))
10193fvmpt2 6433 . . . . . . . . 9 ((𝑥𝑋𝐴 ∈ ℂ) → ((𝑥𝑋𝐴)‘𝑥) = 𝐴)
10273, 34, 101syl2anc 565 . . . . . . . 8 ((𝜑𝑥𝑋) → ((𝑥𝑋𝐴)‘𝑥) = 𝐴)
10392, 100, 1023eqtrrd 2809 . . . . . . 7 ((𝜑𝑥𝑋) → 𝐴 = 0 / 𝑛𝐵)
104103oveq1d 6807 . . . . . 6 ((𝜑𝑥𝑋) → (𝐴 / 𝐶) = (0 / 𝑛𝐵 / 𝐶))
105104mpteq2dva 4876 . . . . 5 (𝜑 → (𝑥𝑋 ↦ (𝐴 / 𝐶)) = (𝑥𝑋 ↦ (0 / 𝑛𝐵 / 𝐶)))
10646, 105eqtrd 2804 . . . 4 (𝜑 → ((𝑆 D𝑛 (𝑥𝑋 ↦ (𝐴 / 𝐶)))‘0) = (𝑥𝑋 ↦ (0 / 𝑛𝐵 / 𝐶)))
107106a1i 11 . . 3 (𝑀 ∈ (ℤ‘0) → (𝜑 → ((𝑆 D𝑛 (𝑥𝑋 ↦ (𝐴 / 𝐶)))‘0) = (𝑥𝑋 ↦ (0 / 𝑛𝐵 / 𝐶))))
108 simp3 1131 . . . . 5 ((𝑗 ∈ (0..^𝑀) ∧ (𝜑 → ((𝑆 D𝑛 (𝑥𝑋 ↦ (𝐴 / 𝐶)))‘𝑗) = (𝑥𝑋 ↦ (𝑗 / 𝑛𝐵 / 𝐶))) ∧ 𝜑) → 𝜑)
109 simp1 1129 . . . . 5 ((𝑗 ∈ (0..^𝑀) ∧ (𝜑 → ((𝑆 D𝑛 (𝑥𝑋 ↦ (𝐴 / 𝐶)))‘𝑗) = (𝑥𝑋 ↦ (𝑗 / 𝑛𝐵 / 𝐶))) ∧ 𝜑) → 𝑗 ∈ (0..^𝑀))
110 simpr 471 . . . . . . 7 (((𝜑 → ((𝑆 D𝑛 (𝑥𝑋 ↦ (𝐴 / 𝐶)))‘𝑗) = (𝑥𝑋 ↦ (𝑗 / 𝑛𝐵 / 𝐶))) ∧ 𝜑) → 𝜑)
111 simpl 468 . . . . . . 7 (((𝜑 → ((𝑆 D𝑛 (𝑥𝑋 ↦ (𝐴 / 𝐶)))‘𝑗) = (𝑥𝑋 ↦ (𝑗 / 𝑛𝐵 / 𝐶))) ∧ 𝜑) → (𝜑 → ((𝑆 D𝑛 (𝑥𝑋 ↦ (𝐴 / 𝐶)))‘𝑗) = (𝑥𝑋 ↦ (𝑗 / 𝑛𝐵 / 𝐶))))
112110, 111mpd 15 . . . . . 6 (((𝜑 → ((𝑆 D𝑛 (𝑥𝑋 ↦ (𝐴 / 𝐶)))‘𝑗) = (𝑥𝑋 ↦ (𝑗 / 𝑛𝐵 / 𝐶))) ∧ 𝜑) → ((𝑆 D𝑛 (𝑥𝑋 ↦ (𝐴 / 𝐶)))‘𝑗) = (𝑥𝑋 ↦ (𝑗 / 𝑛𝐵 / 𝐶)))
1131123adant1 1123 . . . . 5 ((𝑗 ∈ (0..^𝑀) ∧ (𝜑 → ((𝑆 D𝑛 (𝑥𝑋 ↦ (𝐴 / 𝐶)))‘𝑗) = (𝑥𝑋 ↦ (𝑗 / 𝑛𝐵 / 𝐶))) ∧ 𝜑) → ((𝑆 D𝑛 (𝑥𝑋 ↦ (𝐴 / 𝐶)))‘𝑗) = (𝑥𝑋 ↦ (𝑗 / 𝑛𝐵 / 𝐶)))
11431ad2antrr 697 . . . . . . 7 (((𝜑𝑗 ∈ (0..^𝑀)) ∧ ((𝑆 D𝑛 (𝑥𝑋 ↦ (𝐴 / 𝐶)))‘𝑗) = (𝑥𝑋 ↦ (𝑗 / 𝑛𝐵 / 𝐶))) → 𝑆 ⊆ ℂ)
11544ad2antrr 697 . . . . . . 7 (((𝜑𝑗 ∈ (0..^𝑀)) ∧ ((𝑆 D𝑛 (𝑥𝑋 ↦ (𝐴 / 𝐶)))‘𝑗) = (𝑥𝑋 ↦ (𝑗 / 𝑛𝐵 / 𝐶))) → (𝑥𝑋 ↦ (𝐴 / 𝐶)) ∈ (ℂ ↑pm 𝑆))
116 elfzofz 12692 . . . . . . . 8 (𝑗 ∈ (0..^𝑀) → 𝑗 ∈ (0...𝑀))
117 elfznn0 12639 . . . . . . . . 9 (𝑗 ∈ (0...𝑀) → 𝑗 ∈ ℕ0)
118117ad2antlr 698 . . . . . . . 8 (((𝜑𝑗 ∈ (0...𝑀)) ∧ ((𝑆 D𝑛 (𝑥𝑋 ↦ (𝐴 / 𝐶)))‘𝑗) = (𝑥𝑋 ↦ (𝑗 / 𝑛𝐵 / 𝐶))) → 𝑗 ∈ ℕ0)
119116, 118sylanl2 652 . . . . . . 7 (((𝜑𝑗 ∈ (0..^𝑀)) ∧ ((𝑆 D𝑛 (𝑥𝑋 ↦ (𝐴 / 𝐶)))‘𝑗) = (𝑥𝑋 ↦ (𝑗 / 𝑛𝐵 / 𝐶))) → 𝑗 ∈ ℕ0)
120 dvnp1 23907 . . . . . . 7 ((𝑆 ⊆ ℂ ∧ (𝑥𝑋 ↦ (𝐴 / 𝐶)) ∈ (ℂ ↑pm 𝑆) ∧ 𝑗 ∈ ℕ0) → ((𝑆 D𝑛 (𝑥𝑋 ↦ (𝐴 / 𝐶)))‘(𝑗 + 1)) = (𝑆 D ((𝑆 D𝑛 (𝑥𝑋 ↦ (𝐴 / 𝐶)))‘𝑗)))
121114, 115, 119, 120syl3anc 1475 . . . . . 6 (((𝜑𝑗 ∈ (0..^𝑀)) ∧ ((𝑆 D𝑛 (𝑥𝑋 ↦ (𝐴 / 𝐶)))‘𝑗) = (𝑥𝑋 ↦ (𝑗 / 𝑛𝐵 / 𝐶))) → ((𝑆 D𝑛 (𝑥𝑋 ↦ (𝐴 / 𝐶)))‘(𝑗 + 1)) = (𝑆 D ((𝑆 D𝑛 (𝑥𝑋 ↦ (𝐴 / 𝐶)))‘𝑗)))
122 oveq2 6800 . . . . . . 7 (((𝑆 D𝑛 (𝑥𝑋 ↦ (𝐴 / 𝐶)))‘𝑗) = (𝑥𝑋 ↦ (𝑗 / 𝑛𝐵 / 𝐶)) → (𝑆 D ((𝑆 D𝑛 (𝑥𝑋 ↦ (𝐴 / 𝐶)))‘𝑗)) = (𝑆 D (𝑥𝑋 ↦ (𝑗 / 𝑛𝐵 / 𝐶))))
123122adantl 467 . . . . . 6 (((𝜑𝑗 ∈ (0..^𝑀)) ∧ ((𝑆 D𝑛 (𝑥𝑋 ↦ (𝐴 / 𝐶)))‘𝑗) = (𝑥𝑋 ↦ (𝑗 / 𝑛𝐵 / 𝐶))) → (𝑆 D ((𝑆 D𝑛 (𝑥𝑋 ↦ (𝐴 / 𝐶)))‘𝑗)) = (𝑆 D (𝑥𝑋 ↦ (𝑗 / 𝑛𝐵 / 𝐶))))
12431adantr 466 . . . . . . . . . . 11 ((𝜑𝑗 ∈ (0..^𝑀)) → 𝑆 ⊆ ℂ)
12544adantr 466 . . . . . . . . . . 11 ((𝜑𝑗 ∈ (0..^𝑀)) → (𝑥𝑋 ↦ (𝐴 / 𝐶)) ∈ (ℂ ↑pm 𝑆))
126 simpr 471 . . . . . . . . . . . . 13 ((𝜑𝑗 ∈ (0...𝑀)) → 𝑗 ∈ (0...𝑀))
127126, 117syl 17 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ (0...𝑀)) → 𝑗 ∈ ℕ0)
128116, 127sylan2 572 . . . . . . . . . . 11 ((𝜑𝑗 ∈ (0..^𝑀)) → 𝑗 ∈ ℕ0)
129124, 125, 128, 120syl3anc 1475 . . . . . . . . . 10 ((𝜑𝑗 ∈ (0..^𝑀)) → ((𝑆 D𝑛 (𝑥𝑋 ↦ (𝐴 / 𝐶)))‘(𝑗 + 1)) = (𝑆 D ((𝑆 D𝑛 (𝑥𝑋 ↦ (𝐴 / 𝐶)))‘𝑗)))
130129adantr 466 . . . . . . . . 9 (((𝜑𝑗 ∈ (0..^𝑀)) ∧ ((𝑆 D𝑛 (𝑥𝑋 ↦ (𝐴 / 𝐶)))‘𝑗) = (𝑥𝑋 ↦ (𝑗 / 𝑛𝐵 / 𝐶))) → ((𝑆 D𝑛 (𝑥𝑋 ↦ (𝐴 / 𝐶)))‘(𝑗 + 1)) = (𝑆 D ((𝑆 D𝑛 (𝑥𝑋 ↦ (𝐴 / 𝐶)))‘𝑗)))
13129adantr 466 . . . . . . . . . . 11 ((𝜑𝑗 ∈ (0..^𝑀)) → 𝑆 ∈ {ℝ, ℂ})
132 simplr 744 . . . . . . . . . . . . 13 (((𝜑𝑗 ∈ (0...𝑀)) ∧ 𝑥𝑋) → 𝑗 ∈ (0...𝑀))
13347ad2antrr 697 . . . . . . . . . . . . . 14 (((𝜑𝑗 ∈ (0...𝑀)) ∧ 𝑥𝑋) → 𝜑)
134 simpr 471 . . . . . . . . . . . . . 14 (((𝜑𝑗 ∈ (0...𝑀)) ∧ 𝑥𝑋) → 𝑥𝑋)
135133, 134, 1323jca 1121 . . . . . . . . . . . . 13 (((𝜑𝑗 ∈ (0...𝑀)) ∧ 𝑥𝑋) → (𝜑𝑥𝑋𝑗 ∈ (0...𝑀)))
136 nfcv 2912 . . . . . . . . . . . . . 14 𝑛𝑗
137 nfv 1994 . . . . . . . . . . . . . . 15 𝑛(𝜑𝑥𝑋𝑗 ∈ (0...𝑀))
138136nfcsb1 3695 . . . . . . . . . . . . . . . 16 𝑛𝑗 / 𝑛𝐵
139138, 79nfel 2925 . . . . . . . . . . . . . . 15 𝑛𝑗 / 𝑛𝐵 ∈ ℂ
140137, 139nfim 1976 . . . . . . . . . . . . . 14 𝑛((𝜑𝑥𝑋𝑗 ∈ (0...𝑀)) → 𝑗 / 𝑛𝐵 ∈ ℂ)
141 eleq1 2837 . . . . . . . . . . . . . . . 16 (𝑛 = 𝑗 → (𝑛 ∈ (0...𝑀) ↔ 𝑗 ∈ (0...𝑀)))
1421413anbi3d 1552 . . . . . . . . . . . . . . 15 (𝑛 = 𝑗 → ((𝜑𝑥𝑋𝑛 ∈ (0...𝑀)) ↔ (𝜑𝑥𝑋𝑗 ∈ (0...𝑀))))
143 csbeq1a 3689 . . . . . . . . . . . . . . . 16 (𝑛 = 𝑗𝐵 = 𝑗 / 𝑛𝐵)
144143eleq1d 2834 . . . . . . . . . . . . . . 15 (𝑛 = 𝑗 → (𝐵 ∈ ℂ ↔ 𝑗 / 𝑛𝐵 ∈ ℂ))
145142, 144imbi12d 333 . . . . . . . . . . . . . 14 (𝑛 = 𝑗 → (((𝜑𝑥𝑋𝑛 ∈ (0...𝑀)) → 𝐵 ∈ ℂ) ↔ ((𝜑𝑥𝑋𝑗 ∈ (0...𝑀)) → 𝑗 / 𝑛𝐵 ∈ ℂ)))
146136, 140, 145, 85vtoclgf 3413 . . . . . . . . . . . . 13 (𝑗 ∈ (0...𝑀) → ((𝜑𝑥𝑋𝑗 ∈ (0...𝑀)) → 𝑗 / 𝑛𝐵 ∈ ℂ))
147132, 135, 146sylc 65 . . . . . . . . . . . 12 (((𝜑𝑗 ∈ (0...𝑀)) ∧ 𝑥𝑋) → 𝑗 / 𝑛𝐵 ∈ ℂ)
148116, 147sylanl2 652 . . . . . . . . . . 11 (((𝜑𝑗 ∈ (0..^𝑀)) ∧ 𝑥𝑋) → 𝑗 / 𝑛𝐵 ∈ ℂ)
149 fzofzp1 12772 . . . . . . . . . . . . 13 (𝑗 ∈ (0..^𝑀) → (𝑗 + 1) ∈ (0...𝑀))
150149ad2antlr 698 . . . . . . . . . . . 12 (((𝜑𝑗 ∈ (0..^𝑀)) ∧ 𝑥𝑋) → (𝑗 + 1) ∈ (0...𝑀))
151116, 133sylanl2 652 . . . . . . . . . . . . 13 (((𝜑𝑗 ∈ (0..^𝑀)) ∧ 𝑥𝑋) → 𝜑)
152 simpr 471 . . . . . . . . . . . . 13 (((𝜑𝑗 ∈ (0..^𝑀)) ∧ 𝑥𝑋) → 𝑥𝑋)
153151, 152, 1503jca 1121 . . . . . . . . . . . 12 (((𝜑𝑗 ∈ (0..^𝑀)) ∧ 𝑥𝑋) → (𝜑𝑥𝑋 ∧ (𝑗 + 1) ∈ (0...𝑀)))
154 nfcv 2912 . . . . . . . . . . . . 13 𝑛(𝑗 + 1)
155 nfv 1994 . . . . . . . . . . . . . 14 𝑛(𝜑𝑥𝑋 ∧ (𝑗 + 1) ∈ (0...𝑀))
156154nfcsb1 3695 . . . . . . . . . . . . . . 15 𝑛(𝑗 + 1) / 𝑛𝐵
157156, 79nfel 2925 . . . . . . . . . . . . . 14 𝑛(𝑗 + 1) / 𝑛𝐵 ∈ ℂ
158155, 157nfim 1976 . . . . . . . . . . . . 13 𝑛((𝜑𝑥𝑋 ∧ (𝑗 + 1) ∈ (0...𝑀)) → (𝑗 + 1) / 𝑛𝐵 ∈ ℂ)
159 eleq1 2837 . . . . . . . . . . . . . . 15 (𝑛 = (𝑗 + 1) → (𝑛 ∈ (0...𝑀) ↔ (𝑗 + 1) ∈ (0...𝑀)))
1601593anbi3d 1552 . . . . . . . . . . . . . 14 (𝑛 = (𝑗 + 1) → ((𝜑𝑥𝑋𝑛 ∈ (0...𝑀)) ↔ (𝜑𝑥𝑋 ∧ (𝑗 + 1) ∈ (0...𝑀))))
161 csbeq1a 3689 . . . . . . . . . . . . . . 15 (𝑛 = (𝑗 + 1) → 𝐵 = (𝑗 + 1) / 𝑛𝐵)
162161eleq1d 2834 . . . . . . . . . . . . . 14 (𝑛 = (𝑗 + 1) → (𝐵 ∈ ℂ ↔ (𝑗 + 1) / 𝑛𝐵 ∈ ℂ))
163160, 162imbi12d 333 . . . . . . . . . . . . 13 (𝑛 = (𝑗 + 1) → (((𝜑𝑥𝑋𝑛 ∈ (0...𝑀)) → 𝐵 ∈ ℂ) ↔ ((𝜑𝑥𝑋 ∧ (𝑗 + 1) ∈ (0...𝑀)) → (𝑗 + 1) / 𝑛𝐵 ∈ ℂ)))
164154, 158, 163, 85vtoclgf 3413 . . . . . . . . . . . 12 ((𝑗 + 1) ∈ (0...𝑀) → ((𝜑𝑥𝑋 ∧ (𝑗 + 1) ∈ (0...𝑀)) → (𝑗 + 1) / 𝑛𝐵 ∈ ℂ))
165150, 153, 164sylc 65 . . . . . . . . . . 11 (((𝜑𝑗 ∈ (0..^𝑀)) ∧ 𝑥𝑋) → (𝑗 + 1) / 𝑛𝐵 ∈ ℂ)
166 simpl 468 . . . . . . . . . . . . . . 15 ((𝜑𝑗 ∈ (0..^𝑀)) → 𝜑)
167116adantl 467 . . . . . . . . . . . . . . 15 ((𝜑𝑗 ∈ (0..^𝑀)) → 𝑗 ∈ (0...𝑀))
168 nfv 1994 . . . . . . . . . . . . . . . . 17 𝑛(𝜑𝑗 ∈ (0...𝑀))
169 nfcv 2912 . . . . . . . . . . . . . . . . . 18 𝑛((𝑆 D𝑛 (𝑥𝑋𝐴))‘𝑗)
17055, 138nfmpt 4878 . . . . . . . . . . . . . . . . . 18 𝑛(𝑥𝑋𝑗 / 𝑛𝐵)
171169, 170nfeq 2924 . . . . . . . . . . . . . . . . 17 𝑛((𝑆 D𝑛 (𝑥𝑋𝐴))‘𝑗) = (𝑥𝑋𝑗 / 𝑛𝐵)
172168, 171nfim 1976 . . . . . . . . . . . . . . . 16 𝑛((𝜑𝑗 ∈ (0...𝑀)) → ((𝑆 D𝑛 (𝑥𝑋𝐴))‘𝑗) = (𝑥𝑋𝑗 / 𝑛𝐵))
173141anbi2d 606 . . . . . . . . . . . . . . . . 17 (𝑛 = 𝑗 → ((𝜑𝑛 ∈ (0...𝑀)) ↔ (𝜑𝑗 ∈ (0...𝑀))))
174 fveq2 6332 . . . . . . . . . . . . . . . . . 18 (𝑛 = 𝑗 → ((𝑆 D𝑛 (𝑥𝑋𝐴))‘𝑛) = ((𝑆 D𝑛 (𝑥𝑋𝐴))‘𝑗))
175143mpteq2dv 4877 . . . . . . . . . . . . . . . . . 18 (𝑛 = 𝑗 → (𝑥𝑋𝐵) = (𝑥𝑋𝑗 / 𝑛𝐵))
176174, 175eqeq12d 2785 . . . . . . . . . . . . . . . . 17 (𝑛 = 𝑗 → (((𝑆 D𝑛 (𝑥𝑋𝐴))‘𝑛) = (𝑥𝑋𝐵) ↔ ((𝑆 D𝑛 (𝑥𝑋𝐴))‘𝑗) = (𝑥𝑋𝑗 / 𝑛𝐵)))
177173, 176imbi12d 333 . . . . . . . . . . . . . . . 16 (𝑛 = 𝑗 → (((𝜑𝑛 ∈ (0...𝑀)) → ((𝑆 D𝑛 (𝑥𝑋𝐴))‘𝑛) = (𝑥𝑋𝐵)) ↔ ((𝜑𝑗 ∈ (0...𝑀)) → ((𝑆 D𝑛 (𝑥𝑋𝐴))‘𝑗) = (𝑥𝑋𝑗 / 𝑛𝐵))))
178172, 177, 68chvar 2423 . . . . . . . . . . . . . . 15 ((𝜑𝑗 ∈ (0...𝑀)) → ((𝑆 D𝑛 (𝑥𝑋𝐴))‘𝑗) = (𝑥𝑋𝑗 / 𝑛𝐵))
179166, 167, 178syl2anc 565 . . . . . . . . . . . . . 14 ((𝜑𝑗 ∈ (0..^𝑀)) → ((𝑆 D𝑛 (𝑥𝑋𝐴))‘𝑗) = (𝑥𝑋𝑗 / 𝑛𝐵))
180179eqcomd 2776 . . . . . . . . . . . . 13 ((𝜑𝑗 ∈ (0..^𝑀)) → (𝑥𝑋𝑗 / 𝑛𝐵) = ((𝑆 D𝑛 (𝑥𝑋𝐴))‘𝑗))
181180oveq2d 6808 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ (0..^𝑀)) → (𝑆 D (𝑥𝑋𝑗 / 𝑛𝐵)) = (𝑆 D ((𝑆 D𝑛 (𝑥𝑋𝐴))‘𝑗)))
182166, 96syl 17 . . . . . . . . . . . . . 14 ((𝜑𝑗 ∈ (0..^𝑀)) → (𝑥𝑋𝐴) ∈ (ℂ ↑pm 𝑆))
183 dvnp1 23907 . . . . . . . . . . . . . 14 ((𝑆 ⊆ ℂ ∧ (𝑥𝑋𝐴) ∈ (ℂ ↑pm 𝑆) ∧ 𝑗 ∈ ℕ0) → ((𝑆 D𝑛 (𝑥𝑋𝐴))‘(𝑗 + 1)) = (𝑆 D ((𝑆 D𝑛 (𝑥𝑋𝐴))‘𝑗)))
184124, 182, 128, 183syl3anc 1475 . . . . . . . . . . . . 13 ((𝜑𝑗 ∈ (0..^𝑀)) → ((𝑆 D𝑛 (𝑥𝑋𝐴))‘(𝑗 + 1)) = (𝑆 D ((𝑆 D𝑛 (𝑥𝑋𝐴))‘𝑗)))
185184eqcomd 2776 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ (0..^𝑀)) → (𝑆 D ((𝑆 D𝑛 (𝑥𝑋𝐴))‘𝑗)) = ((𝑆 D𝑛 (𝑥𝑋𝐴))‘(𝑗 + 1)))
186149adantl 467 . . . . . . . . . . . . 13 ((𝜑𝑗 ∈ (0..^𝑀)) → (𝑗 + 1) ∈ (0...𝑀))
187166, 186jca 495 . . . . . . . . . . . . 13 ((𝜑𝑗 ∈ (0..^𝑀)) → (𝜑 ∧ (𝑗 + 1) ∈ (0...𝑀)))
188 nfv 1994 . . . . . . . . . . . . . . 15 𝑛(𝜑 ∧ (𝑗 + 1) ∈ (0...𝑀))
189 nfcv 2912 . . . . . . . . . . . . . . . 16 𝑛((𝑆 D𝑛 (𝑥𝑋𝐴))‘(𝑗 + 1))
19055, 156nfmpt 4878 . . . . . . . . . . . . . . . 16 𝑛(𝑥𝑋(𝑗 + 1) / 𝑛𝐵)
191189, 190nfeq 2924 . . . . . . . . . . . . . . 15 𝑛((𝑆 D𝑛 (𝑥𝑋𝐴))‘(𝑗 + 1)) = (𝑥𝑋(𝑗 + 1) / 𝑛𝐵)
192188, 191nfim 1976 . . . . . . . . . . . . . 14 𝑛((𝜑 ∧ (𝑗 + 1) ∈ (0...𝑀)) → ((𝑆 D𝑛 (𝑥𝑋𝐴))‘(𝑗 + 1)) = (𝑥𝑋(𝑗 + 1) / 𝑛𝐵))
193159anbi2d 606 . . . . . . . . . . . . . . 15 (𝑛 = (𝑗 + 1) → ((𝜑𝑛 ∈ (0...𝑀)) ↔ (𝜑 ∧ (𝑗 + 1) ∈ (0...𝑀))))
194 fveq2 6332 . . . . . . . . . . . . . . . 16 (𝑛 = (𝑗 + 1) → ((𝑆 D𝑛 (𝑥𝑋𝐴))‘𝑛) = ((𝑆 D𝑛 (𝑥𝑋𝐴))‘(𝑗 + 1)))
195161mpteq2dv 4877 . . . . . . . . . . . . . . . 16 (𝑛 = (𝑗 + 1) → (𝑥𝑋𝐵) = (𝑥𝑋(𝑗 + 1) / 𝑛𝐵))
196194, 195eqeq12d 2785 . . . . . . . . . . . . . . 15 (𝑛 = (𝑗 + 1) → (((𝑆 D𝑛 (𝑥𝑋𝐴))‘𝑛) = (𝑥𝑋𝐵) ↔ ((𝑆 D𝑛 (𝑥𝑋𝐴))‘(𝑗 + 1)) = (𝑥𝑋(𝑗 + 1) / 𝑛𝐵)))
197193, 196imbi12d 333 . . . . . . . . . . . . . 14 (𝑛 = (𝑗 + 1) → (((𝜑𝑛 ∈ (0...𝑀)) → ((𝑆 D𝑛 (𝑥𝑋𝐴))‘𝑛) = (𝑥𝑋𝐵)) ↔ ((𝜑 ∧ (𝑗 + 1) ∈ (0...𝑀)) → ((𝑆 D𝑛 (𝑥𝑋𝐴))‘(𝑗 + 1)) = (𝑥𝑋(𝑗 + 1) / 𝑛𝐵))))
198154, 192, 197, 68vtoclgf 3413 . . . . . . . . . . . . 13 ((𝑗 + 1) ∈ (0...𝑀) → ((𝜑 ∧ (𝑗 + 1) ∈ (0...𝑀)) → ((𝑆 D𝑛 (𝑥𝑋𝐴))‘(𝑗 + 1)) = (𝑥𝑋(𝑗 + 1) / 𝑛𝐵)))
199186, 187, 198sylc 65 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ (0..^𝑀)) → ((𝑆 D𝑛 (𝑥𝑋𝐴))‘(𝑗 + 1)) = (𝑥𝑋(𝑗 + 1) / 𝑛𝐵))
200181, 185, 1993eqtrd 2808 . . . . . . . . . . 11 ((𝜑𝑗 ∈ (0..^𝑀)) → (𝑆 D (𝑥𝑋𝑗 / 𝑛𝐵)) = (𝑥𝑋(𝑗 + 1) / 𝑛𝐵))
20135adantr 466 . . . . . . . . . . 11 ((𝜑𝑗 ∈ (0..^𝑀)) → 𝐶 ∈ ℂ)
20237adantr 466 . . . . . . . . . . 11 ((𝜑𝑗 ∈ (0..^𝑀)) → 𝐶 ≠ 0)
203131, 148, 165, 200, 201, 202dvmptdivc 23947 . . . . . . . . . 10 ((𝜑𝑗 ∈ (0..^𝑀)) → (𝑆 D (𝑥𝑋 ↦ (𝑗 / 𝑛𝐵 / 𝐶))) = (𝑥𝑋 ↦ ((𝑗 + 1) / 𝑛𝐵 / 𝐶)))
204203adantr 466 . . . . . . . . 9 (((𝜑𝑗 ∈ (0..^𝑀)) ∧ ((𝑆 D𝑛 (𝑥𝑋 ↦ (𝐴 / 𝐶)))‘𝑗) = (𝑥𝑋 ↦ (𝑗 / 𝑛𝐵 / 𝐶))) → (𝑆 D (𝑥𝑋 ↦ (𝑗 / 𝑛𝐵 / 𝐶))) = (𝑥𝑋 ↦ ((𝑗 + 1) / 𝑛𝐵 / 𝐶)))
205130, 123, 2043eqtrd 2808 . . . . . . . 8 (((𝜑𝑗 ∈ (0..^𝑀)) ∧ ((𝑆 D𝑛 (𝑥𝑋 ↦ (𝐴 / 𝐶)))‘𝑗) = (𝑥𝑋 ↦ (𝑗 / 𝑛𝐵 / 𝐶))) → ((𝑆 D𝑛 (𝑥𝑋 ↦ (𝐴 / 𝐶)))‘(𝑗 + 1)) = (𝑥𝑋 ↦ ((𝑗 + 1) / 𝑛𝐵 / 𝐶)))
206205eqcomd 2776 . . . . . . 7 (((𝜑𝑗 ∈ (0..^𝑀)) ∧ ((𝑆 D𝑛 (𝑥𝑋 ↦ (𝐴 / 𝐶)))‘𝑗) = (𝑥𝑋 ↦ (𝑗 / 𝑛𝐵 / 𝐶))) → (𝑥𝑋 ↦ ((𝑗 + 1) / 𝑛𝐵 / 𝐶)) = ((𝑆 D𝑛 (𝑥𝑋 ↦ (𝐴 / 𝐶)))‘(𝑗 + 1)))
207206, 121, 1233eqtrrd 2809 . . . . . 6 (((𝜑𝑗 ∈ (0..^𝑀)) ∧ ((𝑆 D𝑛 (𝑥𝑋 ↦ (𝐴 / 𝐶)))‘𝑗) = (𝑥𝑋 ↦ (𝑗 / 𝑛𝐵 / 𝐶))) → (𝑆 D (𝑥𝑋 ↦ (𝑗 / 𝑛𝐵 / 𝐶))) = (𝑥𝑋 ↦ ((𝑗 + 1) / 𝑛𝐵 / 𝐶)))
208121, 123, 2073eqtrd 2808 . . . . 5 (((𝜑𝑗 ∈ (0..^𝑀)) ∧ ((𝑆 D𝑛 (𝑥𝑋 ↦ (𝐴 / 𝐶)))‘𝑗) = (𝑥𝑋 ↦ (𝑗 / 𝑛𝐵 / 𝐶))) → ((𝑆 D𝑛 (𝑥𝑋 ↦ (𝐴 / 𝐶)))‘(𝑗 + 1)) = (𝑥𝑋 ↦ ((𝑗 + 1) / 𝑛𝐵 / 𝐶)))
209108, 109, 113, 208syl21anc 1474 . . . 4 ((𝑗 ∈ (0..^𝑀) ∧ (𝜑 → ((𝑆 D𝑛 (𝑥𝑋 ↦ (𝐴 / 𝐶)))‘𝑗) = (𝑥𝑋 ↦ (𝑗 / 𝑛𝐵 / 𝐶))) ∧ 𝜑) → ((𝑆 D𝑛 (𝑥𝑋 ↦ (𝐴 / 𝐶)))‘(𝑗 + 1)) = (𝑥𝑋 ↦ ((𝑗 + 1) / 𝑛𝐵 / 𝐶)))
2102093exp 1111 . . 3 (𝑗 ∈ (0..^𝑀) → ((𝜑 → ((𝑆 D𝑛 (𝑥𝑋 ↦ (𝐴 / 𝐶)))‘𝑗) = (𝑥𝑋 ↦ (𝑗 / 𝑛𝐵 / 𝐶))) → (𝜑 → ((𝑆 D𝑛 (𝑥𝑋 ↦ (𝐴 / 𝐶)))‘(𝑗 + 1)) = (𝑥𝑋 ↦ ((𝑗 + 1) / 𝑛𝐵 / 𝐶)))))
2118, 14, 20, 28, 107, 210fzind2 12793 . 2 (𝑛 ∈ (0...𝑀) → (𝜑 → ((𝑆 D𝑛 (𝑥𝑋 ↦ (𝐴 / 𝐶)))‘𝑛) = (𝑥𝑋 ↦ (𝐵 / 𝐶))))
2121, 2, 211sylc 65 1 ((𝜑𝑛 ∈ (0...𝑀)) → ((𝑆 D𝑛 (𝑥𝑋 ↦ (𝐴 / 𝐶)))‘𝑛) = (𝑥𝑋 ↦ (𝐵 / 𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 382  w3a 1070   = wceq 1630  wcel 2144  wne 2942  Vcvv 3349  csb 3680  wss 3721  {cpr 4316  cmpt 4861  wf 6027  cfv 6031  (class class class)co 6792  pm cpm 8009  cc 10135  cr 10136  0cc0 10137  1c1 10138   + caddc 10140   / cdiv 10885  0cn0 11493  cuz 11887  ...cfz 12532  ..^cfzo 12672   D cdv 23846   D𝑛 cdvn 23847
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1869  ax-4 1884  ax-5 1990  ax-6 2056  ax-7 2092  ax-8 2146  ax-9 2153  ax-10 2173  ax-11 2189  ax-12 2202  ax-13 2407  ax-ext 2750  ax-rep 4902  ax-sep 4912  ax-nul 4920  ax-pow 4971  ax-pr 5034  ax-un 7095  ax-inf2 8701  ax-cnex 10193  ax-resscn 10194  ax-1cn 10195  ax-icn 10196  ax-addcl 10197  ax-addrcl 10198  ax-mulcl 10199  ax-mulrcl 10200  ax-mulcom 10201  ax-addass 10202  ax-mulass 10203  ax-distr 10204  ax-i2m1 10205  ax-1ne0 10206  ax-1rid 10207  ax-rnegex 10208  ax-rrecex 10209  ax-cnre 10210  ax-pre-lttri 10211  ax-pre-lttrn 10212  ax-pre-ltadd 10213  ax-pre-mulgt0 10214  ax-pre-sup 10215  ax-addf 10216  ax-mulf 10217
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 827  df-3or 1071  df-3an 1072  df-tru 1633  df-ex 1852  df-nf 1857  df-sb 2049  df-eu 2621  df-mo 2622  df-clab 2757  df-cleq 2763  df-clel 2766  df-nfc 2901  df-ne 2943  df-nel 3046  df-ral 3065  df-rex 3066  df-reu 3067  df-rmo 3068  df-rab 3069  df-v 3351  df-sbc 3586  df-csb 3681  df-dif 3724  df-un 3726  df-in 3728  df-ss 3735  df-pss 3737  df-nul 4062  df-if 4224  df-pw 4297  df-sn 4315  df-pr 4317  df-tp 4319  df-op 4321  df-uni 4573  df-int 4610  df-iun 4654  df-iin 4655  df-br 4785  df-opab 4845  df-mpt 4862  df-tr 4885  df-id 5157  df-eprel 5162  df-po 5170  df-so 5171  df-fr 5208  df-se 5209  df-we 5210  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-pred 5823  df-ord 5869  df-on 5870  df-lim 5871  df-suc 5872  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039  df-isom 6040  df-riota 6753  df-ov 6795  df-oprab 6796  df-mpt2 6797  df-of 7043  df-om 7212  df-1st 7314  df-2nd 7315  df-supp 7446  df-wrecs 7558  df-recs 7620  df-rdg 7658  df-1o 7712  df-2o 7713  df-oadd 7716  df-er 7895  df-map 8010  df-pm 8011  df-ixp 8062  df-en 8109  df-dom 8110  df-sdom 8111  df-fin 8112  df-fsupp 8431  df-fi 8472  df-sup 8503  df-inf 8504  df-oi 8570  df-card 8964  df-cda 9191  df-pnf 10277  df-mnf 10278  df-xr 10279  df-ltxr 10280  df-le 10281  df-sub 10469  df-neg 10470  df-div 10886  df-nn 11222  df-2 11280  df-3 11281  df-4 11282  df-5 11283  df-6 11284  df-7 11285  df-8 11286  df-9 11287  df-n0 11494  df-z 11579  df-dec 11695  df-uz 11888  df-q 11991  df-rp 12035  df-xneg 12150  df-xadd 12151  df-xmul 12152  df-icc 12386  df-fz 12533  df-fzo 12673  df-seq 13008  df-exp 13067  df-hash 13321  df-cj 14046  df-re 14047  df-im 14048  df-sqrt 14182  df-abs 14183  df-struct 16065  df-ndx 16066  df-slot 16067  df-base 16069  df-sets 16070  df-ress 16071  df-plusg 16161  df-mulr 16162  df-starv 16163  df-sca 16164  df-vsca 16165  df-ip 16166  df-tset 16167  df-ple 16168  df-ds 16171  df-unif 16172  df-hom 16173  df-cco 16174  df-rest 16290  df-topn 16291  df-0g 16309  df-gsum 16310  df-topgen 16311  df-pt 16312  df-prds 16315  df-xrs 16369  df-qtop 16374  df-imas 16375  df-xps 16377  df-mre 16453  df-mrc 16454  df-acs 16456  df-mgm 17449  df-sgrp 17491  df-mnd 17502  df-submnd 17543  df-mulg 17748  df-cntz 17956  df-cmn 18401  df-psmet 19952  df-xmet 19953  df-met 19954  df-bl 19955  df-mopn 19956  df-fbas 19957  df-fg 19958  df-cnfld 19961  df-top 20918  df-topon 20935  df-topsp 20957  df-bases 20970  df-cld 21043  df-ntr 21044  df-cls 21045  df-nei 21122  df-lp 21160  df-perf 21161  df-cn 21251  df-cnp 21252  df-haus 21339  df-tx 21585  df-hmeo 21778  df-fil 21869  df-fm 21961  df-flim 21962  df-flf 21963  df-xms 22344  df-ms 22345  df-tms 22346  df-cncf 22900  df-limc 23849  df-dv 23850  df-dvn 23851
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator