Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dvnmptconst Structured version   Visualization version   GIF version

Theorem dvnmptconst 40674
Description: The 𝑁-th derivative of a constant function. (Contributed by Glauco Siliprandi, 5-Apr-2020.)
Hypotheses
Ref Expression
dvnmptconst.s (𝜑𝑆 ∈ {ℝ, ℂ})
dvnmptconst.x (𝜑𝑋 ∈ ((TopOpen‘ℂfld) ↾t 𝑆))
dvnmptconst.a (𝜑𝐴 ∈ ℂ)
dvnmptconst.n (𝜑𝑁 ∈ ℕ)
Assertion
Ref Expression
dvnmptconst (𝜑 → ((𝑆 D𝑛 (𝑥𝑋𝐴))‘𝑁) = (𝑥𝑋 ↦ 0))
Distinct variable groups:   𝑥,𝐴   𝑥,𝑆   𝑥,𝑋   𝜑,𝑥
Allowed substitution hint:   𝑁(𝑥)

Proof of Theorem dvnmptconst
Dummy variables 𝑚 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dvnmptconst.n . 2 (𝜑𝑁 ∈ ℕ)
2 id 22 . 2 (𝜑𝜑)
3 fveq2 6332 . . . . 5 (𝑛 = 1 → ((𝑆 D𝑛 (𝑥𝑋𝐴))‘𝑛) = ((𝑆 D𝑛 (𝑥𝑋𝐴))‘1))
43eqeq1d 2773 . . . 4 (𝑛 = 1 → (((𝑆 D𝑛 (𝑥𝑋𝐴))‘𝑛) = (𝑥𝑋 ↦ 0) ↔ ((𝑆 D𝑛 (𝑥𝑋𝐴))‘1) = (𝑥𝑋 ↦ 0)))
54imbi2d 329 . . 3 (𝑛 = 1 → ((𝜑 → ((𝑆 D𝑛 (𝑥𝑋𝐴))‘𝑛) = (𝑥𝑋 ↦ 0)) ↔ (𝜑 → ((𝑆 D𝑛 (𝑥𝑋𝐴))‘1) = (𝑥𝑋 ↦ 0))))
6 fveq2 6332 . . . . 5 (𝑛 = 𝑚 → ((𝑆 D𝑛 (𝑥𝑋𝐴))‘𝑛) = ((𝑆 D𝑛 (𝑥𝑋𝐴))‘𝑚))
76eqeq1d 2773 . . . 4 (𝑛 = 𝑚 → (((𝑆 D𝑛 (𝑥𝑋𝐴))‘𝑛) = (𝑥𝑋 ↦ 0) ↔ ((𝑆 D𝑛 (𝑥𝑋𝐴))‘𝑚) = (𝑥𝑋 ↦ 0)))
87imbi2d 329 . . 3 (𝑛 = 𝑚 → ((𝜑 → ((𝑆 D𝑛 (𝑥𝑋𝐴))‘𝑛) = (𝑥𝑋 ↦ 0)) ↔ (𝜑 → ((𝑆 D𝑛 (𝑥𝑋𝐴))‘𝑚) = (𝑥𝑋 ↦ 0))))
9 fveq2 6332 . . . . 5 (𝑛 = (𝑚 + 1) → ((𝑆 D𝑛 (𝑥𝑋𝐴))‘𝑛) = ((𝑆 D𝑛 (𝑥𝑋𝐴))‘(𝑚 + 1)))
109eqeq1d 2773 . . . 4 (𝑛 = (𝑚 + 1) → (((𝑆 D𝑛 (𝑥𝑋𝐴))‘𝑛) = (𝑥𝑋 ↦ 0) ↔ ((𝑆 D𝑛 (𝑥𝑋𝐴))‘(𝑚 + 1)) = (𝑥𝑋 ↦ 0)))
1110imbi2d 329 . . 3 (𝑛 = (𝑚 + 1) → ((𝜑 → ((𝑆 D𝑛 (𝑥𝑋𝐴))‘𝑛) = (𝑥𝑋 ↦ 0)) ↔ (𝜑 → ((𝑆 D𝑛 (𝑥𝑋𝐴))‘(𝑚 + 1)) = (𝑥𝑋 ↦ 0))))
12 fveq2 6332 . . . . 5 (𝑛 = 𝑁 → ((𝑆 D𝑛 (𝑥𝑋𝐴))‘𝑛) = ((𝑆 D𝑛 (𝑥𝑋𝐴))‘𝑁))
1312eqeq1d 2773 . . . 4 (𝑛 = 𝑁 → (((𝑆 D𝑛 (𝑥𝑋𝐴))‘𝑛) = (𝑥𝑋 ↦ 0) ↔ ((𝑆 D𝑛 (𝑥𝑋𝐴))‘𝑁) = (𝑥𝑋 ↦ 0)))
1413imbi2d 329 . . 3 (𝑛 = 𝑁 → ((𝜑 → ((𝑆 D𝑛 (𝑥𝑋𝐴))‘𝑛) = (𝑥𝑋 ↦ 0)) ↔ (𝜑 → ((𝑆 D𝑛 (𝑥𝑋𝐴))‘𝑁) = (𝑥𝑋 ↦ 0))))
15 dvnmptconst.s . . . . . 6 (𝜑𝑆 ∈ {ℝ, ℂ})
16 recnprss 23888 . . . . . 6 (𝑆 ∈ {ℝ, ℂ} → 𝑆 ⊆ ℂ)
1715, 16syl 17 . . . . 5 (𝜑𝑆 ⊆ ℂ)
18 dvnmptconst.a . . . . . . 7 (𝜑𝐴 ∈ ℂ)
1918adantr 466 . . . . . 6 ((𝜑𝑥𝑋) → 𝐴 ∈ ℂ)
20 restsspw 16300 . . . . . . . 8 ((TopOpen‘ℂfld) ↾t 𝑆) ⊆ 𝒫 𝑆
21 dvnmptconst.x . . . . . . . 8 (𝜑𝑋 ∈ ((TopOpen‘ℂfld) ↾t 𝑆))
2220, 21sseldi 3750 . . . . . . 7 (𝜑𝑋 ∈ 𝒫 𝑆)
23 elpwi 4307 . . . . . . 7 (𝑋 ∈ 𝒫 𝑆𝑋𝑆)
2422, 23syl 17 . . . . . 6 (𝜑𝑋𝑆)
25 cnex 10219 . . . . . . 7 ℂ ∈ V
2625a1i 11 . . . . . 6 (𝜑 → ℂ ∈ V)
2719, 24, 26, 15mptelpm 39877 . . . . 5 (𝜑 → (𝑥𝑋𝐴) ∈ (ℂ ↑pm 𝑆))
28 dvn1 23909 . . . . 5 ((𝑆 ⊆ ℂ ∧ (𝑥𝑋𝐴) ∈ (ℂ ↑pm 𝑆)) → ((𝑆 D𝑛 (𝑥𝑋𝐴))‘1) = (𝑆 D (𝑥𝑋𝐴)))
2917, 27, 28syl2anc 573 . . . 4 (𝜑 → ((𝑆 D𝑛 (𝑥𝑋𝐴))‘1) = (𝑆 D (𝑥𝑋𝐴)))
3015, 21, 18dvmptconst 40647 . . . 4 (𝜑 → (𝑆 D (𝑥𝑋𝐴)) = (𝑥𝑋 ↦ 0))
3129, 30eqtrd 2805 . . 3 (𝜑 → ((𝑆 D𝑛 (𝑥𝑋𝐴))‘1) = (𝑥𝑋 ↦ 0))
32 simp3 1132 . . . . 5 ((𝑚 ∈ ℕ ∧ (𝜑 → ((𝑆 D𝑛 (𝑥𝑋𝐴))‘𝑚) = (𝑥𝑋 ↦ 0)) ∧ 𝜑) → 𝜑)
33 simp1 1130 . . . . 5 ((𝑚 ∈ ℕ ∧ (𝜑 → ((𝑆 D𝑛 (𝑥𝑋𝐴))‘𝑚) = (𝑥𝑋 ↦ 0)) ∧ 𝜑) → 𝑚 ∈ ℕ)
34 simpr 471 . . . . . . 7 (((𝜑 → ((𝑆 D𝑛 (𝑥𝑋𝐴))‘𝑚) = (𝑥𝑋 ↦ 0)) ∧ 𝜑) → 𝜑)
35 simpl 468 . . . . . . 7 (((𝜑 → ((𝑆 D𝑛 (𝑥𝑋𝐴))‘𝑚) = (𝑥𝑋 ↦ 0)) ∧ 𝜑) → (𝜑 → ((𝑆 D𝑛 (𝑥𝑋𝐴))‘𝑚) = (𝑥𝑋 ↦ 0)))
36 pm3.35 804 . . . . . . 7 ((𝜑 ∧ (𝜑 → ((𝑆 D𝑛 (𝑥𝑋𝐴))‘𝑚) = (𝑥𝑋 ↦ 0))) → ((𝑆 D𝑛 (𝑥𝑋𝐴))‘𝑚) = (𝑥𝑋 ↦ 0))
3734, 35, 36syl2anc 573 . . . . . 6 (((𝜑 → ((𝑆 D𝑛 (𝑥𝑋𝐴))‘𝑚) = (𝑥𝑋 ↦ 0)) ∧ 𝜑) → ((𝑆 D𝑛 (𝑥𝑋𝐴))‘𝑚) = (𝑥𝑋 ↦ 0))
38373adant1 1124 . . . . 5 ((𝑚 ∈ ℕ ∧ (𝜑 → ((𝑆 D𝑛 (𝑥𝑋𝐴))‘𝑚) = (𝑥𝑋 ↦ 0)) ∧ 𝜑) → ((𝑆 D𝑛 (𝑥𝑋𝐴))‘𝑚) = (𝑥𝑋 ↦ 0))
39173ad2ant1 1127 . . . . . . 7 ((𝜑𝑚 ∈ ℕ ∧ ((𝑆 D𝑛 (𝑥𝑋𝐴))‘𝑚) = (𝑥𝑋 ↦ 0)) → 𝑆 ⊆ ℂ)
40273ad2ant1 1127 . . . . . . 7 ((𝜑𝑚 ∈ ℕ ∧ ((𝑆 D𝑛 (𝑥𝑋𝐴))‘𝑚) = (𝑥𝑋 ↦ 0)) → (𝑥𝑋𝐴) ∈ (ℂ ↑pm 𝑆))
41 nnnn0 11501 . . . . . . . 8 (𝑚 ∈ ℕ → 𝑚 ∈ ℕ0)
42413ad2ant2 1128 . . . . . . 7 ((𝜑𝑚 ∈ ℕ ∧ ((𝑆 D𝑛 (𝑥𝑋𝐴))‘𝑚) = (𝑥𝑋 ↦ 0)) → 𝑚 ∈ ℕ0)
43 dvnp1 23908 . . . . . . 7 ((𝑆 ⊆ ℂ ∧ (𝑥𝑋𝐴) ∈ (ℂ ↑pm 𝑆) ∧ 𝑚 ∈ ℕ0) → ((𝑆 D𝑛 (𝑥𝑋𝐴))‘(𝑚 + 1)) = (𝑆 D ((𝑆 D𝑛 (𝑥𝑋𝐴))‘𝑚)))
4439, 40, 42, 43syl3anc 1476 . . . . . 6 ((𝜑𝑚 ∈ ℕ ∧ ((𝑆 D𝑛 (𝑥𝑋𝐴))‘𝑚) = (𝑥𝑋 ↦ 0)) → ((𝑆 D𝑛 (𝑥𝑋𝐴))‘(𝑚 + 1)) = (𝑆 D ((𝑆 D𝑛 (𝑥𝑋𝐴))‘𝑚)))
45 oveq2 6801 . . . . . . 7 (((𝑆 D𝑛 (𝑥𝑋𝐴))‘𝑚) = (𝑥𝑋 ↦ 0) → (𝑆 D ((𝑆 D𝑛 (𝑥𝑋𝐴))‘𝑚)) = (𝑆 D (𝑥𝑋 ↦ 0)))
46453ad2ant3 1129 . . . . . 6 ((𝜑𝑚 ∈ ℕ ∧ ((𝑆 D𝑛 (𝑥𝑋𝐴))‘𝑚) = (𝑥𝑋 ↦ 0)) → (𝑆 D ((𝑆 D𝑛 (𝑥𝑋𝐴))‘𝑚)) = (𝑆 D (𝑥𝑋 ↦ 0)))
47 0cnd 10235 . . . . . . . 8 (𝜑 → 0 ∈ ℂ)
4815, 21, 47dvmptconst 40647 . . . . . . 7 (𝜑 → (𝑆 D (𝑥𝑋 ↦ 0)) = (𝑥𝑋 ↦ 0))
49483ad2ant1 1127 . . . . . 6 ((𝜑𝑚 ∈ ℕ ∧ ((𝑆 D𝑛 (𝑥𝑋𝐴))‘𝑚) = (𝑥𝑋 ↦ 0)) → (𝑆 D (𝑥𝑋 ↦ 0)) = (𝑥𝑋 ↦ 0))
5044, 46, 493eqtrd 2809 . . . . 5 ((𝜑𝑚 ∈ ℕ ∧ ((𝑆 D𝑛 (𝑥𝑋𝐴))‘𝑚) = (𝑥𝑋 ↦ 0)) → ((𝑆 D𝑛 (𝑥𝑋𝐴))‘(𝑚 + 1)) = (𝑥𝑋 ↦ 0))
5132, 33, 38, 50syl3anc 1476 . . . 4 ((𝑚 ∈ ℕ ∧ (𝜑 → ((𝑆 D𝑛 (𝑥𝑋𝐴))‘𝑚) = (𝑥𝑋 ↦ 0)) ∧ 𝜑) → ((𝑆 D𝑛 (𝑥𝑋𝐴))‘(𝑚 + 1)) = (𝑥𝑋 ↦ 0))
52513exp 1112 . . 3 (𝑚 ∈ ℕ → ((𝜑 → ((𝑆 D𝑛 (𝑥𝑋𝐴))‘𝑚) = (𝑥𝑋 ↦ 0)) → (𝜑 → ((𝑆 D𝑛 (𝑥𝑋𝐴))‘(𝑚 + 1)) = (𝑥𝑋 ↦ 0))))
535, 8, 11, 14, 31, 52nnind 11240 . 2 (𝑁 ∈ ℕ → (𝜑 → ((𝑆 D𝑛 (𝑥𝑋𝐴))‘𝑁) = (𝑥𝑋 ↦ 0)))
541, 2, 53sylc 65 1 (𝜑 → ((𝑆 D𝑛 (𝑥𝑋𝐴))‘𝑁) = (𝑥𝑋 ↦ 0))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 382  w3a 1071   = wceq 1631  wcel 2145  Vcvv 3351  wss 3723  𝒫 cpw 4297  {cpr 4318  cmpt 4863  cfv 6031  (class class class)co 6793  pm cpm 8010  cc 10136  cr 10137  0cc0 10138  1c1 10139   + caddc 10141  cn 11222  0cn0 11494  t crest 16289  TopOpenctopn 16290  fldccnfld 19961   D cdv 23847   D𝑛 cdvn 23848
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-rep 4904  ax-sep 4915  ax-nul 4923  ax-pow 4974  ax-pr 5034  ax-un 7096  ax-inf2 8702  ax-cnex 10194  ax-resscn 10195  ax-1cn 10196  ax-icn 10197  ax-addcl 10198  ax-addrcl 10199  ax-mulcl 10200  ax-mulrcl 10201  ax-mulcom 10202  ax-addass 10203  ax-mulass 10204  ax-distr 10205  ax-i2m1 10206  ax-1ne0 10207  ax-1rid 10208  ax-rnegex 10209  ax-rrecex 10210  ax-cnre 10211  ax-pre-lttri 10212  ax-pre-lttrn 10213  ax-pre-ltadd 10214  ax-pre-mulgt0 10215  ax-pre-sup 10216
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 835  df-3or 1072  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-pss 3739  df-nul 4064  df-if 4226  df-pw 4299  df-sn 4317  df-pr 4319  df-tp 4321  df-op 4323  df-uni 4575  df-int 4612  df-iun 4656  df-iin 4657  df-br 4787  df-opab 4847  df-mpt 4864  df-tr 4887  df-id 5157  df-eprel 5162  df-po 5170  df-so 5171  df-fr 5208  df-we 5210  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-pred 5823  df-ord 5869  df-on 5870  df-lim 5871  df-suc 5872  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039  df-riota 6754  df-ov 6796  df-oprab 6797  df-mpt2 6798  df-om 7213  df-1st 7315  df-2nd 7316  df-wrecs 7559  df-recs 7621  df-rdg 7659  df-1o 7713  df-oadd 7717  df-er 7896  df-map 8011  df-pm 8012  df-en 8110  df-dom 8111  df-sdom 8112  df-fin 8113  df-fi 8473  df-sup 8504  df-inf 8505  df-pnf 10278  df-mnf 10279  df-xr 10280  df-ltxr 10281  df-le 10282  df-sub 10470  df-neg 10471  df-div 10887  df-nn 11223  df-2 11281  df-3 11282  df-4 11283  df-5 11284  df-6 11285  df-7 11286  df-8 11287  df-9 11288  df-n0 11495  df-z 11580  df-dec 11696  df-uz 11889  df-q 11992  df-rp 12036  df-xneg 12151  df-xadd 12152  df-xmul 12153  df-icc 12387  df-fz 12534  df-seq 13009  df-exp 13068  df-cj 14047  df-re 14048  df-im 14049  df-sqrt 14183  df-abs 14184  df-struct 16066  df-ndx 16067  df-slot 16068  df-base 16070  df-plusg 16162  df-mulr 16163  df-starv 16164  df-tset 16168  df-ple 16169  df-ds 16172  df-unif 16173  df-rest 16291  df-topn 16292  df-topgen 16312  df-psmet 19953  df-xmet 19954  df-met 19955  df-bl 19956  df-mopn 19957  df-fbas 19958  df-fg 19959  df-cnfld 19962  df-top 20919  df-topon 20936  df-topsp 20958  df-bases 20971  df-cld 21044  df-ntr 21045  df-cls 21046  df-nei 21123  df-lp 21161  df-perf 21162  df-cn 21252  df-cnp 21253  df-haus 21340  df-fil 21870  df-fm 21962  df-flim 21963  df-flf 21964  df-xms 22345  df-ms 22346  df-cncf 22901  df-limc 23850  df-dv 23851  df-dvn 23852
This theorem is referenced by:  dvnprodlem3  40681
  Copyright terms: Public domain W3C validator