MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvne0 Structured version   Visualization version   GIF version

Theorem dvne0 24015
Description: A function on a closed interval with nonzero derivative is either monotone increasing or monotone decreasing. (Contributed by Mario Carneiro, 19-Feb-2015.)
Hypotheses
Ref Expression
dvne0.a (𝜑𝐴 ∈ ℝ)
dvne0.b (𝜑𝐵 ∈ ℝ)
dvne0.f (𝜑𝐹 ∈ ((𝐴[,]𝐵)–cn→ℝ))
dvne0.d (𝜑 → dom (ℝ D 𝐹) = (𝐴(,)𝐵))
dvne0.z (𝜑 → ¬ 0 ∈ ran (ℝ D 𝐹))
Assertion
Ref Expression
dvne0 (𝜑 → (𝐹 Isom < , < ((𝐴[,]𝐵), ran 𝐹) ∨ 𝐹 Isom < , < ((𝐴[,]𝐵), ran 𝐹)))

Proof of Theorem dvne0
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dvne0.z . . . . . . . . . . . 12 (𝜑 → ¬ 0 ∈ ran (ℝ D 𝐹))
2 eleq1 2841 . . . . . . . . . . . . 13 (𝑥 = 0 → (𝑥 ∈ ran (ℝ D 𝐹) ↔ 0 ∈ ran (ℝ D 𝐹)))
32notbid 308 . . . . . . . . . . . 12 (𝑥 = 0 → (¬ 𝑥 ∈ ran (ℝ D 𝐹) ↔ ¬ 0 ∈ ran (ℝ D 𝐹)))
41, 3syl5ibrcom 238 . . . . . . . . . . 11 (𝜑 → (𝑥 = 0 → ¬ 𝑥 ∈ ran (ℝ D 𝐹)))
54necon2ad 2961 . . . . . . . . . 10 (𝜑 → (𝑥 ∈ ran (ℝ D 𝐹) → 𝑥 ≠ 0))
65imp 394 . . . . . . . . 9 ((𝜑𝑥 ∈ ran (ℝ D 𝐹)) → 𝑥 ≠ 0)
7 dvne0.f . . . . . . . . . . . . . . 15 (𝜑𝐹 ∈ ((𝐴[,]𝐵)–cn→ℝ))
8 cncff 22936 . . . . . . . . . . . . . . 15 (𝐹 ∈ ((𝐴[,]𝐵)–cn→ℝ) → 𝐹:(𝐴[,]𝐵)⟶ℝ)
97, 8syl 17 . . . . . . . . . . . . . 14 (𝜑𝐹:(𝐴[,]𝐵)⟶ℝ)
10 dvne0.a . . . . . . . . . . . . . . 15 (𝜑𝐴 ∈ ℝ)
11 dvne0.b . . . . . . . . . . . . . . 15 (𝜑𝐵 ∈ ℝ)
12 iccssre 12479 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴[,]𝐵) ⊆ ℝ)
1310, 11, 12syl2anc 574 . . . . . . . . . . . . . 14 (𝜑 → (𝐴[,]𝐵) ⊆ ℝ)
14 dvfre 23955 . . . . . . . . . . . . . 14 ((𝐹:(𝐴[,]𝐵)⟶ℝ ∧ (𝐴[,]𝐵) ⊆ ℝ) → (ℝ D 𝐹):dom (ℝ D 𝐹)⟶ℝ)
159, 13, 14syl2anc 574 . . . . . . . . . . . . 13 (𝜑 → (ℝ D 𝐹):dom (ℝ D 𝐹)⟶ℝ)
1615frnd 6203 . . . . . . . . . . . 12 (𝜑 → ran (ℝ D 𝐹) ⊆ ℝ)
1716sselda 3758 . . . . . . . . . . 11 ((𝜑𝑥 ∈ ran (ℝ D 𝐹)) → 𝑥 ∈ ℝ)
18 0re 10263 . . . . . . . . . . 11 0 ∈ ℝ
19 lttri2 10343 . . . . . . . . . . 11 ((𝑥 ∈ ℝ ∧ 0 ∈ ℝ) → (𝑥 ≠ 0 ↔ (𝑥 < 0 ∨ 0 < 𝑥)))
2017, 18, 19sylancl 575 . . . . . . . . . 10 ((𝜑𝑥 ∈ ran (ℝ D 𝐹)) → (𝑥 ≠ 0 ↔ (𝑥 < 0 ∨ 0 < 𝑥)))
21 0xr 10309 . . . . . . . . . . . . . 14 0 ∈ ℝ*
22 elioomnf 12493 . . . . . . . . . . . . . 14 (0 ∈ ℝ* → (𝑥 ∈ (-∞(,)0) ↔ (𝑥 ∈ ℝ ∧ 𝑥 < 0)))
2321, 22ax-mp 5 . . . . . . . . . . . . 13 (𝑥 ∈ (-∞(,)0) ↔ (𝑥 ∈ ℝ ∧ 𝑥 < 0))
2423baib 526 . . . . . . . . . . . 12 (𝑥 ∈ ℝ → (𝑥 ∈ (-∞(,)0) ↔ 𝑥 < 0))
25 elrp 12054 . . . . . . . . . . . . 13 (𝑥 ∈ ℝ+ ↔ (𝑥 ∈ ℝ ∧ 0 < 𝑥))
2625baib 526 . . . . . . . . . . . 12 (𝑥 ∈ ℝ → (𝑥 ∈ ℝ+ ↔ 0 < 𝑥))
2724, 26orbi12d 931 . . . . . . . . . . 11 (𝑥 ∈ ℝ → ((𝑥 ∈ (-∞(,)0) ∨ 𝑥 ∈ ℝ+) ↔ (𝑥 < 0 ∨ 0 < 𝑥)))
2817, 27syl 17 . . . . . . . . . 10 ((𝜑𝑥 ∈ ran (ℝ D 𝐹)) → ((𝑥 ∈ (-∞(,)0) ∨ 𝑥 ∈ ℝ+) ↔ (𝑥 < 0 ∨ 0 < 𝑥)))
2920, 28bitr4d 272 . . . . . . . . 9 ((𝜑𝑥 ∈ ran (ℝ D 𝐹)) → (𝑥 ≠ 0 ↔ (𝑥 ∈ (-∞(,)0) ∨ 𝑥 ∈ ℝ+)))
306, 29mpbid 223 . . . . . . . 8 ((𝜑𝑥 ∈ ran (ℝ D 𝐹)) → (𝑥 ∈ (-∞(,)0) ∨ 𝑥 ∈ ℝ+))
31 elun 3911 . . . . . . . 8 (𝑥 ∈ ((-∞(,)0) ∪ ℝ+) ↔ (𝑥 ∈ (-∞(,)0) ∨ 𝑥 ∈ ℝ+))
3230, 31sylibr 225 . . . . . . 7 ((𝜑𝑥 ∈ ran (ℝ D 𝐹)) → 𝑥 ∈ ((-∞(,)0) ∪ ℝ+))
3332ex 398 . . . . . 6 (𝜑 → (𝑥 ∈ ran (ℝ D 𝐹) → 𝑥 ∈ ((-∞(,)0) ∪ ℝ+)))
3433ssrdv 3764 . . . . 5 (𝜑 → ran (ℝ D 𝐹) ⊆ ((-∞(,)0) ∪ ℝ+))
35 disjssun 4188 . . . . 5 ((ran (ℝ D 𝐹) ∩ (-∞(,)0)) = ∅ → (ran (ℝ D 𝐹) ⊆ ((-∞(,)0) ∪ ℝ+) ↔ ran (ℝ D 𝐹) ⊆ ℝ+))
3634, 35syl5ibcom 236 . . . 4 (𝜑 → ((ran (ℝ D 𝐹) ∩ (-∞(,)0)) = ∅ → ran (ℝ D 𝐹) ⊆ ℝ+))
3736imp 394 . . 3 ((𝜑 ∧ (ran (ℝ D 𝐹) ∩ (-∞(,)0)) = ∅) → ran (ℝ D 𝐹) ⊆ ℝ+)
3810adantr 467 . . . . 5 ((𝜑 ∧ ran (ℝ D 𝐹) ⊆ ℝ+) → 𝐴 ∈ ℝ)
3911adantr 467 . . . . 5 ((𝜑 ∧ ran (ℝ D 𝐹) ⊆ ℝ+) → 𝐵 ∈ ℝ)
407adantr 467 . . . . 5 ((𝜑 ∧ ran (ℝ D 𝐹) ⊆ ℝ+) → 𝐹 ∈ ((𝐴[,]𝐵)–cn→ℝ))
41 dvne0.d . . . . . . . . . 10 (𝜑 → dom (ℝ D 𝐹) = (𝐴(,)𝐵))
4241feq2d 6182 . . . . . . . . 9 (𝜑 → ((ℝ D 𝐹):dom (ℝ D 𝐹)⟶ℝ ↔ (ℝ D 𝐹):(𝐴(,)𝐵)⟶ℝ))
4315, 42mpbid 223 . . . . . . . 8 (𝜑 → (ℝ D 𝐹):(𝐴(,)𝐵)⟶ℝ)
4443ffnd 6197 . . . . . . 7 (𝜑 → (ℝ D 𝐹) Fn (𝐴(,)𝐵))
4544anim1i 603 . . . . . 6 ((𝜑 ∧ ran (ℝ D 𝐹) ⊆ ℝ+) → ((ℝ D 𝐹) Fn (𝐴(,)𝐵) ∧ ran (ℝ D 𝐹) ⊆ ℝ+))
46 df-f 6046 . . . . . 6 ((ℝ D 𝐹):(𝐴(,)𝐵)⟶ℝ+ ↔ ((ℝ D 𝐹) Fn (𝐴(,)𝐵) ∧ ran (ℝ D 𝐹) ⊆ ℝ+))
4745, 46sylibr 225 . . . . 5 ((𝜑 ∧ ran (ℝ D 𝐹) ⊆ ℝ+) → (ℝ D 𝐹):(𝐴(,)𝐵)⟶ℝ+)
4838, 39, 40, 47dvgt0 24008 . . . 4 ((𝜑 ∧ ran (ℝ D 𝐹) ⊆ ℝ+) → 𝐹 Isom < , < ((𝐴[,]𝐵), ran 𝐹))
4948orcd 889 . . 3 ((𝜑 ∧ ran (ℝ D 𝐹) ⊆ ℝ+) → (𝐹 Isom < , < ((𝐴[,]𝐵), ran 𝐹) ∨ 𝐹 Isom < , < ((𝐴[,]𝐵), ran 𝐹)))
5037, 49syldan 580 . 2 ((𝜑 ∧ (ran (ℝ D 𝐹) ∩ (-∞(,)0)) = ∅) → (𝐹 Isom < , < ((𝐴[,]𝐵), ran 𝐹) ∨ 𝐹 Isom < , < ((𝐴[,]𝐵), ran 𝐹)))
51 n0 4089 . . . 4 ((ran (ℝ D 𝐹) ∩ (-∞(,)0)) ≠ ∅ ↔ ∃𝑥 𝑥 ∈ (ran (ℝ D 𝐹) ∩ (-∞(,)0)))
52 elin 3954 . . . . . 6 (𝑥 ∈ (ran (ℝ D 𝐹) ∩ (-∞(,)0)) ↔ (𝑥 ∈ ran (ℝ D 𝐹) ∧ 𝑥 ∈ (-∞(,)0)))
53 fvelrnb 6402 . . . . . . . . 9 ((ℝ D 𝐹) Fn (𝐴(,)𝐵) → (𝑥 ∈ ran (ℝ D 𝐹) ↔ ∃𝑦 ∈ (𝐴(,)𝐵)((ℝ D 𝐹)‘𝑦) = 𝑥))
5444, 53syl 17 . . . . . . . 8 (𝜑 → (𝑥 ∈ ran (ℝ D 𝐹) ↔ ∃𝑦 ∈ (𝐴(,)𝐵)((ℝ D 𝐹)‘𝑦) = 𝑥))
5510adantr 467 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑦 ∈ (𝐴(,)𝐵) ∧ ((ℝ D 𝐹)‘𝑦) ∈ (-∞(,)0))) → 𝐴 ∈ ℝ)
5611adantr 467 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑦 ∈ (𝐴(,)𝐵) ∧ ((ℝ D 𝐹)‘𝑦) ∈ (-∞(,)0))) → 𝐵 ∈ ℝ)
577adantr 467 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑦 ∈ (𝐴(,)𝐵) ∧ ((ℝ D 𝐹)‘𝑦) ∈ (-∞(,)0))) → 𝐹 ∈ ((𝐴[,]𝐵)–cn→ℝ))
5844adantr 467 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑦 ∈ (𝐴(,)𝐵) ∧ ((ℝ D 𝐹)‘𝑦) ∈ (-∞(,)0))) → (ℝ D 𝐹) Fn (𝐴(,)𝐵))
5943adantr 467 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑦 ∈ (𝐴(,)𝐵) ∧ ((ℝ D 𝐹)‘𝑦) ∈ (-∞(,)0))) → (ℝ D 𝐹):(𝐴(,)𝐵)⟶ℝ)
6059ffvelrnda 6519 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑦 ∈ (𝐴(,)𝐵) ∧ ((ℝ D 𝐹)‘𝑦) ∈ (-∞(,)0))) ∧ 𝑧 ∈ (𝐴(,)𝐵)) → ((ℝ D 𝐹)‘𝑧) ∈ ℝ)
611ad2antrr 706 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝑦 ∈ (𝐴(,)𝐵) ∧ ((ℝ D 𝐹)‘𝑦) ∈ (-∞(,)0))) ∧ 𝑧 ∈ (𝐴(,)𝐵)) → ¬ 0 ∈ ran (ℝ D 𝐹))
62 simplrl 784 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑 ∧ (𝑦 ∈ (𝐴(,)𝐵) ∧ ((ℝ D 𝐹)‘𝑦) ∈ (-∞(,)0))) ∧ (𝑧 ∈ (𝐴(,)𝐵) ∧ 0 ≤ ((ℝ D 𝐹)‘𝑧))) → 𝑦 ∈ (𝐴(,)𝐵))
63 simprl 776 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑 ∧ (𝑦 ∈ (𝐴(,)𝐵) ∧ ((ℝ D 𝐹)‘𝑦) ∈ (-∞(,)0))) ∧ (𝑧 ∈ (𝐴(,)𝐵) ∧ 0 ≤ ((ℝ D 𝐹)‘𝑧))) → 𝑧 ∈ (𝐴(,)𝐵))
64 ioossicc 12483 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝐴(,)𝐵) ⊆ (𝐴[,]𝐵)
65 rescncf 22940 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝐴(,)𝐵) ⊆ (𝐴[,]𝐵) → (𝐹 ∈ ((𝐴[,]𝐵)–cn→ℝ) → (𝐹 ↾ (𝐴(,)𝐵)) ∈ ((𝐴(,)𝐵)–cn→ℝ)))
6664, 7, 65mpsyl 68 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → (𝐹 ↾ (𝐴(,)𝐵)) ∈ ((𝐴(,)𝐵)–cn→ℝ))
6766ad2antrr 706 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑 ∧ (𝑦 ∈ (𝐴(,)𝐵) ∧ ((ℝ D 𝐹)‘𝑦) ∈ (-∞(,)0))) ∧ (𝑧 ∈ (𝐴(,)𝐵) ∧ 0 ≤ ((ℝ D 𝐹)‘𝑧))) → (𝐹 ↾ (𝐴(,)𝐵)) ∈ ((𝐴(,)𝐵)–cn→ℝ))
68 ax-resscn 10216 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ℝ ⊆ ℂ
6968a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝜑 → ℝ ⊆ ℂ)
70 fss 6209 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝐹:(𝐴[,]𝐵)⟶ℝ ∧ ℝ ⊆ ℂ) → 𝐹:(𝐴[,]𝐵)⟶ℂ)
719, 68, 70sylancl 575 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝜑𝐹:(𝐴[,]𝐵)⟶ℂ)
7264, 13syl5ss 3769 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝜑 → (𝐴(,)𝐵) ⊆ ℝ)
73 eqid 2774 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
7473tgioo2 22846 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (topGen‘ran (,)) = ((TopOpen‘ℂfld) ↾t ℝ)
7573, 74dvres 23916 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((ℝ ⊆ ℂ ∧ 𝐹:(𝐴[,]𝐵)⟶ℂ) ∧ ((𝐴[,]𝐵) ⊆ ℝ ∧ (𝐴(,)𝐵) ⊆ ℝ)) → (ℝ D (𝐹 ↾ (𝐴(,)𝐵))) = ((ℝ D 𝐹) ↾ ((int‘(topGen‘ran (,)))‘(𝐴(,)𝐵))))
7669, 71, 13, 72, 75syl22anc 856 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝜑 → (ℝ D (𝐹 ↾ (𝐴(,)𝐵))) = ((ℝ D 𝐹) ↾ ((int‘(topGen‘ran (,)))‘(𝐴(,)𝐵))))
77 retop 22805 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (topGen‘ran (,)) ∈ Top
78 iooretop 22809 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝐴(,)𝐵) ∈ (topGen‘ran (,))
79 isopn3i 21127 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((topGen‘ran (,)) ∈ Top ∧ (𝐴(,)𝐵) ∈ (topGen‘ran (,))) → ((int‘(topGen‘ran (,)))‘(𝐴(,)𝐵)) = (𝐴(,)𝐵))
8077, 78, 79mp2an 673 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((int‘(topGen‘ran (,)))‘(𝐴(,)𝐵)) = (𝐴(,)𝐵)
8180reseq2i 5543 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((ℝ D 𝐹) ↾ ((int‘(topGen‘ran (,)))‘(𝐴(,)𝐵))) = ((ℝ D 𝐹) ↾ (𝐴(,)𝐵))
82 fnresdm 6151 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((ℝ D 𝐹) Fn (𝐴(,)𝐵) → ((ℝ D 𝐹) ↾ (𝐴(,)𝐵)) = (ℝ D 𝐹))
8344, 82syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝜑 → ((ℝ D 𝐹) ↾ (𝐴(,)𝐵)) = (ℝ D 𝐹))
8481, 83syl5eq 2820 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝜑 → ((ℝ D 𝐹) ↾ ((int‘(topGen‘ran (,)))‘(𝐴(,)𝐵))) = (ℝ D 𝐹))
8576, 84eqtrd 2808 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝜑 → (ℝ D (𝐹 ↾ (𝐴(,)𝐵))) = (ℝ D 𝐹))
8685dmeqd 5476 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑 → dom (ℝ D (𝐹 ↾ (𝐴(,)𝐵))) = dom (ℝ D 𝐹))
8786, 41eqtrd 2808 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → dom (ℝ D (𝐹 ↾ (𝐴(,)𝐵))) = (𝐴(,)𝐵))
8887ad2antrr 706 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑 ∧ (𝑦 ∈ (𝐴(,)𝐵) ∧ ((ℝ D 𝐹)‘𝑦) ∈ (-∞(,)0))) ∧ (𝑧 ∈ (𝐴(,)𝐵) ∧ 0 ≤ ((ℝ D 𝐹)‘𝑧))) → dom (ℝ D (𝐹 ↾ (𝐴(,)𝐵))) = (𝐴(,)𝐵))
8962, 63, 67, 88dvivth 24014 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑 ∧ (𝑦 ∈ (𝐴(,)𝐵) ∧ ((ℝ D 𝐹)‘𝑦) ∈ (-∞(,)0))) ∧ (𝑧 ∈ (𝐴(,)𝐵) ∧ 0 ≤ ((ℝ D 𝐹)‘𝑧))) → (((ℝ D (𝐹 ↾ (𝐴(,)𝐵)))‘𝑦)[,]((ℝ D (𝐹 ↾ (𝐴(,)𝐵)))‘𝑧)) ⊆ ran (ℝ D (𝐹 ↾ (𝐴(,)𝐵))))
9085ad2antrr 706 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑 ∧ (𝑦 ∈ (𝐴(,)𝐵) ∧ ((ℝ D 𝐹)‘𝑦) ∈ (-∞(,)0))) ∧ (𝑧 ∈ (𝐴(,)𝐵) ∧ 0 ≤ ((ℝ D 𝐹)‘𝑧))) → (ℝ D (𝐹 ↾ (𝐴(,)𝐵))) = (ℝ D 𝐹))
9190fveq1d 6350 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑 ∧ (𝑦 ∈ (𝐴(,)𝐵) ∧ ((ℝ D 𝐹)‘𝑦) ∈ (-∞(,)0))) ∧ (𝑧 ∈ (𝐴(,)𝐵) ∧ 0 ≤ ((ℝ D 𝐹)‘𝑧))) → ((ℝ D (𝐹 ↾ (𝐴(,)𝐵)))‘𝑦) = ((ℝ D 𝐹)‘𝑦))
9290fveq1d 6350 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑 ∧ (𝑦 ∈ (𝐴(,)𝐵) ∧ ((ℝ D 𝐹)‘𝑦) ∈ (-∞(,)0))) ∧ (𝑧 ∈ (𝐴(,)𝐵) ∧ 0 ≤ ((ℝ D 𝐹)‘𝑧))) → ((ℝ D (𝐹 ↾ (𝐴(,)𝐵)))‘𝑧) = ((ℝ D 𝐹)‘𝑧))
9391, 92oveq12d 6830 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑 ∧ (𝑦 ∈ (𝐴(,)𝐵) ∧ ((ℝ D 𝐹)‘𝑦) ∈ (-∞(,)0))) ∧ (𝑧 ∈ (𝐴(,)𝐵) ∧ 0 ≤ ((ℝ D 𝐹)‘𝑧))) → (((ℝ D (𝐹 ↾ (𝐴(,)𝐵)))‘𝑦)[,]((ℝ D (𝐹 ↾ (𝐴(,)𝐵)))‘𝑧)) = (((ℝ D 𝐹)‘𝑦)[,]((ℝ D 𝐹)‘𝑧)))
9490rneqd 5503 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑 ∧ (𝑦 ∈ (𝐴(,)𝐵) ∧ ((ℝ D 𝐹)‘𝑦) ∈ (-∞(,)0))) ∧ (𝑧 ∈ (𝐴(,)𝐵) ∧ 0 ≤ ((ℝ D 𝐹)‘𝑧))) → ran (ℝ D (𝐹 ↾ (𝐴(,)𝐵))) = ran (ℝ D 𝐹))
9589, 93, 943sstr3d 3803 . . . . . . . . . . . . . . . . . . . 20 (((𝜑 ∧ (𝑦 ∈ (𝐴(,)𝐵) ∧ ((ℝ D 𝐹)‘𝑦) ∈ (-∞(,)0))) ∧ (𝑧 ∈ (𝐴(,)𝐵) ∧ 0 ≤ ((ℝ D 𝐹)‘𝑧))) → (((ℝ D 𝐹)‘𝑦)[,]((ℝ D 𝐹)‘𝑧)) ⊆ ran (ℝ D 𝐹))
9618a1i 11 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑 ∧ (𝑦 ∈ (𝐴(,)𝐵) ∧ ((ℝ D 𝐹)‘𝑦) ∈ (-∞(,)0))) ∧ (𝑧 ∈ (𝐴(,)𝐵) ∧ 0 ≤ ((ℝ D 𝐹)‘𝑧))) → 0 ∈ ℝ)
97 simplrr 785 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑 ∧ (𝑦 ∈ (𝐴(,)𝐵) ∧ ((ℝ D 𝐹)‘𝑦) ∈ (-∞(,)0))) ∧ (𝑧 ∈ (𝐴(,)𝐵) ∧ 0 ≤ ((ℝ D 𝐹)‘𝑧))) → ((ℝ D 𝐹)‘𝑦) ∈ (-∞(,)0))
98 elioomnf 12493 . . . . . . . . . . . . . . . . . . . . . . . . 25 (0 ∈ ℝ* → (((ℝ D 𝐹)‘𝑦) ∈ (-∞(,)0) ↔ (((ℝ D 𝐹)‘𝑦) ∈ ℝ ∧ ((ℝ D 𝐹)‘𝑦) < 0)))
9921, 98ax-mp 5 . . . . . . . . . . . . . . . . . . . . . . . 24 (((ℝ D 𝐹)‘𝑦) ∈ (-∞(,)0) ↔ (((ℝ D 𝐹)‘𝑦) ∈ ℝ ∧ ((ℝ D 𝐹)‘𝑦) < 0))
10097, 99sylib 209 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑 ∧ (𝑦 ∈ (𝐴(,)𝐵) ∧ ((ℝ D 𝐹)‘𝑦) ∈ (-∞(,)0))) ∧ (𝑧 ∈ (𝐴(,)𝐵) ∧ 0 ≤ ((ℝ D 𝐹)‘𝑧))) → (((ℝ D 𝐹)‘𝑦) ∈ ℝ ∧ ((ℝ D 𝐹)‘𝑦) < 0))
101100simprd 484 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑 ∧ (𝑦 ∈ (𝐴(,)𝐵) ∧ ((ℝ D 𝐹)‘𝑦) ∈ (-∞(,)0))) ∧ (𝑧 ∈ (𝐴(,)𝐵) ∧ 0 ≤ ((ℝ D 𝐹)‘𝑧))) → ((ℝ D 𝐹)‘𝑦) < 0)
102100simpld 483 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑 ∧ (𝑦 ∈ (𝐴(,)𝐵) ∧ ((ℝ D 𝐹)‘𝑦) ∈ (-∞(,)0))) ∧ (𝑧 ∈ (𝐴(,)𝐵) ∧ 0 ≤ ((ℝ D 𝐹)‘𝑧))) → ((ℝ D 𝐹)‘𝑦) ∈ ℝ)
103 ltle 10349 . . . . . . . . . . . . . . . . . . . . . . 23 ((((ℝ D 𝐹)‘𝑦) ∈ ℝ ∧ 0 ∈ ℝ) → (((ℝ D 𝐹)‘𝑦) < 0 → ((ℝ D 𝐹)‘𝑦) ≤ 0))
104102, 18, 103sylancl 575 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑 ∧ (𝑦 ∈ (𝐴(,)𝐵) ∧ ((ℝ D 𝐹)‘𝑦) ∈ (-∞(,)0))) ∧ (𝑧 ∈ (𝐴(,)𝐵) ∧ 0 ≤ ((ℝ D 𝐹)‘𝑧))) → (((ℝ D 𝐹)‘𝑦) < 0 → ((ℝ D 𝐹)‘𝑦) ≤ 0))
105101, 104mpd 15 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑 ∧ (𝑦 ∈ (𝐴(,)𝐵) ∧ ((ℝ D 𝐹)‘𝑦) ∈ (-∞(,)0))) ∧ (𝑧 ∈ (𝐴(,)𝐵) ∧ 0 ≤ ((ℝ D 𝐹)‘𝑧))) → ((ℝ D 𝐹)‘𝑦) ≤ 0)
106 simprr 778 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑 ∧ (𝑦 ∈ (𝐴(,)𝐵) ∧ ((ℝ D 𝐹)‘𝑦) ∈ (-∞(,)0))) ∧ (𝑧 ∈ (𝐴(,)𝐵) ∧ 0 ≤ ((ℝ D 𝐹)‘𝑧))) → 0 ≤ ((ℝ D 𝐹)‘𝑧))
10763, 60syldan 580 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑 ∧ (𝑦 ∈ (𝐴(,)𝐵) ∧ ((ℝ D 𝐹)‘𝑦) ∈ (-∞(,)0))) ∧ (𝑧 ∈ (𝐴(,)𝐵) ∧ 0 ≤ ((ℝ D 𝐹)‘𝑧))) → ((ℝ D 𝐹)‘𝑧) ∈ ℝ)
108 elicc2 12462 . . . . . . . . . . . . . . . . . . . . . 22 ((((ℝ D 𝐹)‘𝑦) ∈ ℝ ∧ ((ℝ D 𝐹)‘𝑧) ∈ ℝ) → (0 ∈ (((ℝ D 𝐹)‘𝑦)[,]((ℝ D 𝐹)‘𝑧)) ↔ (0 ∈ ℝ ∧ ((ℝ D 𝐹)‘𝑦) ≤ 0 ∧ 0 ≤ ((ℝ D 𝐹)‘𝑧))))
109102, 107, 108syl2anc 574 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑 ∧ (𝑦 ∈ (𝐴(,)𝐵) ∧ ((ℝ D 𝐹)‘𝑦) ∈ (-∞(,)0))) ∧ (𝑧 ∈ (𝐴(,)𝐵) ∧ 0 ≤ ((ℝ D 𝐹)‘𝑧))) → (0 ∈ (((ℝ D 𝐹)‘𝑦)[,]((ℝ D 𝐹)‘𝑧)) ↔ (0 ∈ ℝ ∧ ((ℝ D 𝐹)‘𝑦) ≤ 0 ∧ 0 ≤ ((ℝ D 𝐹)‘𝑧))))
11096, 105, 106, 109mpbir3and 1433 . . . . . . . . . . . . . . . . . . . 20 (((𝜑 ∧ (𝑦 ∈ (𝐴(,)𝐵) ∧ ((ℝ D 𝐹)‘𝑦) ∈ (-∞(,)0))) ∧ (𝑧 ∈ (𝐴(,)𝐵) ∧ 0 ≤ ((ℝ D 𝐹)‘𝑧))) → 0 ∈ (((ℝ D 𝐹)‘𝑦)[,]((ℝ D 𝐹)‘𝑧)))
11195, 110sseldd 3759 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ (𝑦 ∈ (𝐴(,)𝐵) ∧ ((ℝ D 𝐹)‘𝑦) ∈ (-∞(,)0))) ∧ (𝑧 ∈ (𝐴(,)𝐵) ∧ 0 ≤ ((ℝ D 𝐹)‘𝑧))) → 0 ∈ ran (ℝ D 𝐹))
112111expr 445 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝑦 ∈ (𝐴(,)𝐵) ∧ ((ℝ D 𝐹)‘𝑦) ∈ (-∞(,)0))) ∧ 𝑧 ∈ (𝐴(,)𝐵)) → (0 ≤ ((ℝ D 𝐹)‘𝑧) → 0 ∈ ran (ℝ D 𝐹)))
11361, 112mtod 189 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑦 ∈ (𝐴(,)𝐵) ∧ ((ℝ D 𝐹)‘𝑦) ∈ (-∞(,)0))) ∧ 𝑧 ∈ (𝐴(,)𝐵)) → ¬ 0 ≤ ((ℝ D 𝐹)‘𝑧))
114 ltnle 10340 . . . . . . . . . . . . . . . . . 18 ((((ℝ D 𝐹)‘𝑧) ∈ ℝ ∧ 0 ∈ ℝ) → (((ℝ D 𝐹)‘𝑧) < 0 ↔ ¬ 0 ≤ ((ℝ D 𝐹)‘𝑧)))
11560, 18, 114sylancl 575 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑦 ∈ (𝐴(,)𝐵) ∧ ((ℝ D 𝐹)‘𝑦) ∈ (-∞(,)0))) ∧ 𝑧 ∈ (𝐴(,)𝐵)) → (((ℝ D 𝐹)‘𝑧) < 0 ↔ ¬ 0 ≤ ((ℝ D 𝐹)‘𝑧)))
116113, 115mpbird 248 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑦 ∈ (𝐴(,)𝐵) ∧ ((ℝ D 𝐹)‘𝑦) ∈ (-∞(,)0))) ∧ 𝑧 ∈ (𝐴(,)𝐵)) → ((ℝ D 𝐹)‘𝑧) < 0)
117 elioomnf 12493 . . . . . . . . . . . . . . . . 17 (0 ∈ ℝ* → (((ℝ D 𝐹)‘𝑧) ∈ (-∞(,)0) ↔ (((ℝ D 𝐹)‘𝑧) ∈ ℝ ∧ ((ℝ D 𝐹)‘𝑧) < 0)))
11821, 117ax-mp 5 . . . . . . . . . . . . . . . 16 (((ℝ D 𝐹)‘𝑧) ∈ (-∞(,)0) ↔ (((ℝ D 𝐹)‘𝑧) ∈ ℝ ∧ ((ℝ D 𝐹)‘𝑧) < 0))
11960, 116, 118sylanbrc 573 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑦 ∈ (𝐴(,)𝐵) ∧ ((ℝ D 𝐹)‘𝑦) ∈ (-∞(,)0))) ∧ 𝑧 ∈ (𝐴(,)𝐵)) → ((ℝ D 𝐹)‘𝑧) ∈ (-∞(,)0))
120119ralrimiva 3118 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑦 ∈ (𝐴(,)𝐵) ∧ ((ℝ D 𝐹)‘𝑦) ∈ (-∞(,)0))) → ∀𝑧 ∈ (𝐴(,)𝐵)((ℝ D 𝐹)‘𝑧) ∈ (-∞(,)0))
121 ffnfv 6548 . . . . . . . . . . . . . 14 ((ℝ D 𝐹):(𝐴(,)𝐵)⟶(-∞(,)0) ↔ ((ℝ D 𝐹) Fn (𝐴(,)𝐵) ∧ ∀𝑧 ∈ (𝐴(,)𝐵)((ℝ D 𝐹)‘𝑧) ∈ (-∞(,)0)))
12258, 120, 121sylanbrc 573 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑦 ∈ (𝐴(,)𝐵) ∧ ((ℝ D 𝐹)‘𝑦) ∈ (-∞(,)0))) → (ℝ D 𝐹):(𝐴(,)𝐵)⟶(-∞(,)0))
12355, 56, 57, 122dvlt0 24009 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑦 ∈ (𝐴(,)𝐵) ∧ ((ℝ D 𝐹)‘𝑦) ∈ (-∞(,)0))) → 𝐹 Isom < , < ((𝐴[,]𝐵), ran 𝐹))
124123olcd 890 . . . . . . . . . . 11 ((𝜑 ∧ (𝑦 ∈ (𝐴(,)𝐵) ∧ ((ℝ D 𝐹)‘𝑦) ∈ (-∞(,)0))) → (𝐹 Isom < , < ((𝐴[,]𝐵), ran 𝐹) ∨ 𝐹 Isom < , < ((𝐴[,]𝐵), ran 𝐹)))
125124expr 445 . . . . . . . . . 10 ((𝜑𝑦 ∈ (𝐴(,)𝐵)) → (((ℝ D 𝐹)‘𝑦) ∈ (-∞(,)0) → (𝐹 Isom < , < ((𝐴[,]𝐵), ran 𝐹) ∨ 𝐹 Isom < , < ((𝐴[,]𝐵), ran 𝐹))))
126 eleq1 2841 . . . . . . . . . . 11 (((ℝ D 𝐹)‘𝑦) = 𝑥 → (((ℝ D 𝐹)‘𝑦) ∈ (-∞(,)0) ↔ 𝑥 ∈ (-∞(,)0)))
127126imbi1d 331 . . . . . . . . . 10 (((ℝ D 𝐹)‘𝑦) = 𝑥 → ((((ℝ D 𝐹)‘𝑦) ∈ (-∞(,)0) → (𝐹 Isom < , < ((𝐴[,]𝐵), ran 𝐹) ∨ 𝐹 Isom < , < ((𝐴[,]𝐵), ran 𝐹))) ↔ (𝑥 ∈ (-∞(,)0) → (𝐹 Isom < , < ((𝐴[,]𝐵), ran 𝐹) ∨ 𝐹 Isom < , < ((𝐴[,]𝐵), ran 𝐹)))))
128125, 127syl5ibcom 236 . . . . . . . . 9 ((𝜑𝑦 ∈ (𝐴(,)𝐵)) → (((ℝ D 𝐹)‘𝑦) = 𝑥 → (𝑥 ∈ (-∞(,)0) → (𝐹 Isom < , < ((𝐴[,]𝐵), ran 𝐹) ∨ 𝐹 Isom < , < ((𝐴[,]𝐵), ran 𝐹)))))
129128rexlimdva 3183 . . . . . . . 8 (𝜑 → (∃𝑦 ∈ (𝐴(,)𝐵)((ℝ D 𝐹)‘𝑦) = 𝑥 → (𝑥 ∈ (-∞(,)0) → (𝐹 Isom < , < ((𝐴[,]𝐵), ran 𝐹) ∨ 𝐹 Isom < , < ((𝐴[,]𝐵), ran 𝐹)))))
13054, 129sylbid 231 . . . . . . 7 (𝜑 → (𝑥 ∈ ran (ℝ D 𝐹) → (𝑥 ∈ (-∞(,)0) → (𝐹 Isom < , < ((𝐴[,]𝐵), ran 𝐹) ∨ 𝐹 Isom < , < ((𝐴[,]𝐵), ran 𝐹)))))
131130impd 397 . . . . . 6 (𝜑 → ((𝑥 ∈ ran (ℝ D 𝐹) ∧ 𝑥 ∈ (-∞(,)0)) → (𝐹 Isom < , < ((𝐴[,]𝐵), ran 𝐹) ∨ 𝐹 Isom < , < ((𝐴[,]𝐵), ran 𝐹))))
13252, 131syl5bi 233 . . . . 5 (𝜑 → (𝑥 ∈ (ran (ℝ D 𝐹) ∩ (-∞(,)0)) → (𝐹 Isom < , < ((𝐴[,]𝐵), ran 𝐹) ∨ 𝐹 Isom < , < ((𝐴[,]𝐵), ran 𝐹))))
133132exlimdv 2016 . . . 4 (𝜑 → (∃𝑥 𝑥 ∈ (ran (ℝ D 𝐹) ∩ (-∞(,)0)) → (𝐹 Isom < , < ((𝐴[,]𝐵), ran 𝐹) ∨ 𝐹 Isom < , < ((𝐴[,]𝐵), ran 𝐹))))
13451, 133syl5bi 233 . . 3 (𝜑 → ((ran (ℝ D 𝐹) ∩ (-∞(,)0)) ≠ ∅ → (𝐹 Isom < , < ((𝐴[,]𝐵), ran 𝐹) ∨ 𝐹 Isom < , < ((𝐴[,]𝐵), ran 𝐹))))
135134imp 394 . 2 ((𝜑 ∧ (ran (ℝ D 𝐹) ∩ (-∞(,)0)) ≠ ∅) → (𝐹 Isom < , < ((𝐴[,]𝐵), ran 𝐹) ∨ 𝐹 Isom < , < ((𝐴[,]𝐵), ran 𝐹)))
13650, 135pm2.61dane 3033 1 (𝜑 → (𝐹 Isom < , < ((𝐴[,]𝐵), ran 𝐹) ∨ 𝐹 Isom < , < ((𝐴[,]𝐵), ran 𝐹)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 197  wa 383  wo 863  w3a 1098   = wceq 1634  wex 1855  wcel 2148  wne 2946  wral 3064  wrex 3065  cun 3727  cin 3728  wss 3729  c0 4073   class class class wbr 4797  ccnv 5262  dom cdm 5263  ran crn 5264  cres 5265   Fn wfn 6037  wf 6038  cfv 6042   Isom wiso 6043  (class class class)co 6812  cc 10157  cr 10158  0cc0 10159  -∞cmnf 10295  *cxr 10296   < clt 10297  cle 10298  +crp 12052  (,)cioo 12399  [,]cicc 12402  TopOpenctopn 16310  topGenctg 16326  fldccnfld 19981  Topctop 20938  intcnt 21062  cnccncf 22919   D cdv 23868
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1873  ax-4 1888  ax-5 1994  ax-6 2060  ax-7 2096  ax-8 2150  ax-9 2157  ax-10 2177  ax-11 2193  ax-12 2206  ax-13 2411  ax-ext 2754  ax-rep 4917  ax-sep 4928  ax-nul 4936  ax-pow 4988  ax-pr 5048  ax-un 7117  ax-inf2 8723  ax-cnex 10215  ax-resscn 10216  ax-1cn 10217  ax-icn 10218  ax-addcl 10219  ax-addrcl 10220  ax-mulcl 10221  ax-mulrcl 10222  ax-mulcom 10223  ax-addass 10224  ax-mulass 10225  ax-distr 10226  ax-i2m1 10227  ax-1ne0 10228  ax-1rid 10229  ax-rnegex 10230  ax-rrecex 10231  ax-cnre 10232  ax-pre-lttri 10233  ax-pre-lttrn 10234  ax-pre-ltadd 10235  ax-pre-mulgt0 10236  ax-pre-sup 10237  ax-addf 10238  ax-mulf 10239
This theorem depends on definitions:  df-bi 198  df-an 384  df-or 864  df-3or 1099  df-3an 1100  df-tru 1637  df-ex 1856  df-nf 1861  df-sb 2053  df-eu 2625  df-mo 2626  df-clab 2761  df-cleq 2767  df-clel 2770  df-nfc 2905  df-ne 2947  df-nel 3050  df-ral 3069  df-rex 3070  df-reu 3071  df-rmo 3072  df-rab 3073  df-v 3357  df-sbc 3594  df-csb 3689  df-dif 3732  df-un 3734  df-in 3736  df-ss 3743  df-pss 3745  df-nul 4074  df-if 4236  df-pw 4309  df-sn 4327  df-pr 4329  df-tp 4331  df-op 4333  df-uni 4586  df-int 4623  df-iun 4667  df-iin 4668  df-br 4798  df-opab 4860  df-mpt 4877  df-tr 4900  df-id 5171  df-eprel 5176  df-po 5184  df-so 5185  df-fr 5222  df-se 5223  df-we 5224  df-xp 5269  df-rel 5270  df-cnv 5271  df-co 5272  df-dm 5273  df-rn 5274  df-res 5275  df-ima 5276  df-pred 5834  df-ord 5880  df-on 5881  df-lim 5882  df-suc 5883  df-iota 6005  df-fun 6044  df-fn 6045  df-f 6046  df-f1 6047  df-fo 6048  df-f1o 6049  df-fv 6050  df-isom 6051  df-riota 6773  df-ov 6815  df-oprab 6816  df-mpt2 6817  df-of 7065  df-om 7234  df-1st 7336  df-2nd 7337  df-supp 7468  df-wrecs 7580  df-recs 7642  df-rdg 7680  df-1o 7734  df-2o 7735  df-oadd 7738  df-er 7917  df-map 8032  df-pm 8033  df-ixp 8084  df-en 8131  df-dom 8132  df-sdom 8133  df-fin 8134  df-fsupp 8453  df-fi 8494  df-sup 8525  df-inf 8526  df-oi 8592  df-card 8986  df-cda 9213  df-pnf 10299  df-mnf 10300  df-xr 10301  df-ltxr 10302  df-le 10303  df-sub 10491  df-neg 10492  df-div 10908  df-nn 11244  df-2 11302  df-3 11303  df-4 11304  df-5 11305  df-6 11306  df-7 11307  df-8 11308  df-9 11309  df-n0 11517  df-z 11602  df-dec 11718  df-uz 11911  df-q 12014  df-rp 12053  df-xneg 12168  df-xadd 12169  df-xmul 12170  df-ioo 12403  df-ico 12405  df-icc 12406  df-fz 12556  df-fzo 12696  df-seq 13031  df-exp 13090  df-hash 13344  df-cj 14069  df-re 14070  df-im 14071  df-sqrt 14205  df-abs 14206  df-struct 16086  df-ndx 16087  df-slot 16088  df-base 16090  df-sets 16091  df-ress 16092  df-plusg 16182  df-mulr 16183  df-starv 16184  df-sca 16185  df-vsca 16186  df-ip 16187  df-tset 16188  df-ple 16189  df-ds 16192  df-unif 16193  df-hom 16194  df-cco 16195  df-rest 16311  df-topn 16312  df-0g 16330  df-gsum 16331  df-topgen 16332  df-pt 16333  df-prds 16336  df-xrs 16390  df-qtop 16395  df-imas 16396  df-xps 16398  df-mre 16474  df-mrc 16475  df-acs 16477  df-mgm 17470  df-sgrp 17512  df-mnd 17523  df-submnd 17564  df-mulg 17769  df-cntz 17977  df-cmn 18422  df-psmet 19973  df-xmet 19974  df-met 19975  df-bl 19976  df-mopn 19977  df-fbas 19978  df-fg 19979  df-cnfld 19982  df-top 20939  df-topon 20956  df-topsp 20978  df-bases 20991  df-cld 21064  df-ntr 21065  df-cls 21066  df-nei 21143  df-lp 21181  df-perf 21182  df-cn 21272  df-cnp 21273  df-haus 21360  df-cmp 21431  df-tx 21606  df-hmeo 21799  df-fil 21890  df-fm 21982  df-flim 21983  df-flf 21984  df-xms 22365  df-ms 22366  df-tms 22367  df-cncf 22921  df-limc 23871  df-dv 23872
This theorem is referenced by:  dvne0f1  24016  dvcnvrelem1  24021
  Copyright terms: Public domain W3C validator