MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvmptres3 Structured version   Visualization version   GIF version

Theorem dvmptres3 23939
Description: Function-builder for derivative: restrict a derivative to a subset. (Contributed by Mario Carneiro, 11-Feb-2015.)
Hypotheses
Ref Expression
dvmptres3.j 𝐽 = (TopOpen‘ℂfld)
dvmptres3.s (𝜑𝑆 ∈ {ℝ, ℂ})
dvmptres3.x (𝜑𝑋𝐽)
dvmptres3.y (𝜑 → (𝑆𝑋) = 𝑌)
dvmptres3.a ((𝜑𝑥𝑋) → 𝐴 ∈ ℂ)
dvmptres3.b ((𝜑𝑥𝑋) → 𝐵𝑉)
dvmptres3.d (𝜑 → (ℂ D (𝑥𝑋𝐴)) = (𝑥𝑋𝐵))
Assertion
Ref Expression
dvmptres3 (𝜑 → (𝑆 D (𝑥𝑌𝐴)) = (𝑥𝑌𝐵))
Distinct variable groups:   𝜑,𝑥   𝑥,𝑋   𝑥,𝑌
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑥)   𝑆(𝑥)   𝐽(𝑥)   𝑉(𝑥)

Proof of Theorem dvmptres3
StepHypRef Expression
1 dvmptres3.s . . 3 (𝜑𝑆 ∈ {ℝ, ℂ})
2 dvmptres3.a . . . 4 ((𝜑𝑥𝑋) → 𝐴 ∈ ℂ)
3 eqid 2771 . . . 4 (𝑥𝑋𝐴) = (𝑥𝑋𝐴)
42, 3fmptd 6527 . . 3 (𝜑 → (𝑥𝑋𝐴):𝑋⟶ℂ)
5 dvmptres3.x . . 3 (𝜑𝑋𝐽)
6 dvmptres3.d . . . . 5 (𝜑 → (ℂ D (𝑥𝑋𝐴)) = (𝑥𝑋𝐵))
76dmeqd 5464 . . . 4 (𝜑 → dom (ℂ D (𝑥𝑋𝐴)) = dom (𝑥𝑋𝐵))
8 eqid 2771 . . . . 5 (𝑥𝑋𝐵) = (𝑥𝑋𝐵)
9 dvmptres3.b . . . . 5 ((𝜑𝑥𝑋) → 𝐵𝑉)
108, 9dmmptd 6164 . . . 4 (𝜑 → dom (𝑥𝑋𝐵) = 𝑋)
117, 10eqtrd 2805 . . 3 (𝜑 → dom (ℂ D (𝑥𝑋𝐴)) = 𝑋)
12 dvmptres3.j . . . 4 𝐽 = (TopOpen‘ℂfld)
1312dvres3a 23898 . . 3 (((𝑆 ∈ {ℝ, ℂ} ∧ (𝑥𝑋𝐴):𝑋⟶ℂ) ∧ (𝑋𝐽 ∧ dom (ℂ D (𝑥𝑋𝐴)) = 𝑋)) → (𝑆 D ((𝑥𝑋𝐴) ↾ 𝑆)) = ((ℂ D (𝑥𝑋𝐴)) ↾ 𝑆))
141, 4, 5, 11, 13syl22anc 1477 . 2 (𝜑 → (𝑆 D ((𝑥𝑋𝐴) ↾ 𝑆)) = ((ℂ D (𝑥𝑋𝐴)) ↾ 𝑆))
15 rescom 5564 . . . . . 6 (((𝑥𝑋𝐴) ↾ 𝑋) ↾ 𝑆) = (((𝑥𝑋𝐴) ↾ 𝑆) ↾ 𝑋)
16 resres 5550 . . . . . 6 (((𝑥𝑋𝐴) ↾ 𝑆) ↾ 𝑋) = ((𝑥𝑋𝐴) ↾ (𝑆𝑋))
1715, 16eqtri 2793 . . . . 5 (((𝑥𝑋𝐴) ↾ 𝑋) ↾ 𝑆) = ((𝑥𝑋𝐴) ↾ (𝑆𝑋))
18 dvmptres3.y . . . . . 6 (𝜑 → (𝑆𝑋) = 𝑌)
1918reseq2d 5534 . . . . 5 (𝜑 → ((𝑥𝑋𝐴) ↾ (𝑆𝑋)) = ((𝑥𝑋𝐴) ↾ 𝑌))
2017, 19syl5eq 2817 . . . 4 (𝜑 → (((𝑥𝑋𝐴) ↾ 𝑋) ↾ 𝑆) = ((𝑥𝑋𝐴) ↾ 𝑌))
21 ffn 6185 . . . . . 6 ((𝑥𝑋𝐴):𝑋⟶ℂ → (𝑥𝑋𝐴) Fn 𝑋)
22 fnresdm 6140 . . . . . 6 ((𝑥𝑋𝐴) Fn 𝑋 → ((𝑥𝑋𝐴) ↾ 𝑋) = (𝑥𝑋𝐴))
234, 21, 223syl 18 . . . . 5 (𝜑 → ((𝑥𝑋𝐴) ↾ 𝑋) = (𝑥𝑋𝐴))
2423reseq1d 5533 . . . 4 (𝜑 → (((𝑥𝑋𝐴) ↾ 𝑋) ↾ 𝑆) = ((𝑥𝑋𝐴) ↾ 𝑆))
25 inss2 3982 . . . . . 6 (𝑆𝑋) ⊆ 𝑋
2618, 25syl6eqssr 3805 . . . . 5 (𝜑𝑌𝑋)
2726resmptd 5593 . . . 4 (𝜑 → ((𝑥𝑋𝐴) ↾ 𝑌) = (𝑥𝑌𝐴))
2820, 24, 273eqtr3d 2813 . . 3 (𝜑 → ((𝑥𝑋𝐴) ↾ 𝑆) = (𝑥𝑌𝐴))
2928oveq2d 6809 . 2 (𝜑 → (𝑆 D ((𝑥𝑋𝐴) ↾ 𝑆)) = (𝑆 D (𝑥𝑌𝐴)))
30 rescom 5564 . . . . 5 (((𝑥𝑋𝐵) ↾ 𝑋) ↾ 𝑆) = (((𝑥𝑋𝐵) ↾ 𝑆) ↾ 𝑋)
31 resres 5550 . . . . 5 (((𝑥𝑋𝐵) ↾ 𝑆) ↾ 𝑋) = ((𝑥𝑋𝐵) ↾ (𝑆𝑋))
3230, 31eqtri 2793 . . . 4 (((𝑥𝑋𝐵) ↾ 𝑋) ↾ 𝑆) = ((𝑥𝑋𝐵) ↾ (𝑆𝑋))
3318reseq2d 5534 . . . 4 (𝜑 → ((𝑥𝑋𝐵) ↾ (𝑆𝑋)) = ((𝑥𝑋𝐵) ↾ 𝑌))
3432, 33syl5eq 2817 . . 3 (𝜑 → (((𝑥𝑋𝐵) ↾ 𝑋) ↾ 𝑆) = ((𝑥𝑋𝐵) ↾ 𝑌))
359ralrimiva 3115 . . . . . 6 (𝜑 → ∀𝑥𝑋 𝐵𝑉)
368fnmpt 6160 . . . . . 6 (∀𝑥𝑋 𝐵𝑉 → (𝑥𝑋𝐵) Fn 𝑋)
37 fnresdm 6140 . . . . . 6 ((𝑥𝑋𝐵) Fn 𝑋 → ((𝑥𝑋𝐵) ↾ 𝑋) = (𝑥𝑋𝐵))
3835, 36, 373syl 18 . . . . 5 (𝜑 → ((𝑥𝑋𝐵) ↾ 𝑋) = (𝑥𝑋𝐵))
3938, 6eqtr4d 2808 . . . 4 (𝜑 → ((𝑥𝑋𝐵) ↾ 𝑋) = (ℂ D (𝑥𝑋𝐴)))
4039reseq1d 5533 . . 3 (𝜑 → (((𝑥𝑋𝐵) ↾ 𝑋) ↾ 𝑆) = ((ℂ D (𝑥𝑋𝐴)) ↾ 𝑆))
4126resmptd 5593 . . 3 (𝜑 → ((𝑥𝑋𝐵) ↾ 𝑌) = (𝑥𝑌𝐵))
4234, 40, 413eqtr3d 2813 . 2 (𝜑 → ((ℂ D (𝑥𝑋𝐴)) ↾ 𝑆) = (𝑥𝑌𝐵))
4314, 29, 423eqtr3d 2813 1 (𝜑 → (𝑆 D (𝑥𝑌𝐴)) = (𝑥𝑌𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 382   = wceq 1631  wcel 2145  wral 3061  cin 3722  {cpr 4318  cmpt 4863  dom cdm 5249  cres 5251   Fn wfn 6026  wf 6027  cfv 6031  (class class class)co 6793  cc 10136  cr 10137  TopOpenctopn 16290  fldccnfld 19961   D cdv 23847
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-rep 4904  ax-sep 4915  ax-nul 4923  ax-pow 4974  ax-pr 5034  ax-un 7096  ax-cnex 10194  ax-resscn 10195  ax-1cn 10196  ax-icn 10197  ax-addcl 10198  ax-addrcl 10199  ax-mulcl 10200  ax-mulrcl 10201  ax-mulcom 10202  ax-addass 10203  ax-mulass 10204  ax-distr 10205  ax-i2m1 10206  ax-1ne0 10207  ax-1rid 10208  ax-rnegex 10209  ax-rrecex 10210  ax-cnre 10211  ax-pre-lttri 10212  ax-pre-lttrn 10213  ax-pre-ltadd 10214  ax-pre-mulgt0 10215  ax-pre-sup 10216
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3or 1072  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-pss 3739  df-nul 4064  df-if 4226  df-pw 4299  df-sn 4317  df-pr 4319  df-tp 4321  df-op 4323  df-uni 4575  df-int 4612  df-iun 4656  df-iin 4657  df-br 4787  df-opab 4847  df-mpt 4864  df-tr 4887  df-id 5157  df-eprel 5162  df-po 5170  df-so 5171  df-fr 5208  df-we 5210  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-pred 5823  df-ord 5869  df-on 5870  df-lim 5871  df-suc 5872  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039  df-riota 6754  df-ov 6796  df-oprab 6797  df-mpt2 6798  df-om 7213  df-1st 7315  df-2nd 7316  df-wrecs 7559  df-recs 7621  df-rdg 7659  df-1o 7713  df-oadd 7717  df-er 7896  df-map 8011  df-pm 8012  df-en 8110  df-dom 8111  df-sdom 8112  df-fin 8113  df-fi 8473  df-sup 8504  df-inf 8505  df-pnf 10278  df-mnf 10279  df-xr 10280  df-ltxr 10281  df-le 10282  df-sub 10470  df-neg 10471  df-div 10887  df-nn 11223  df-2 11281  df-3 11282  df-4 11283  df-5 11284  df-6 11285  df-7 11286  df-8 11287  df-9 11288  df-n0 11495  df-z 11580  df-dec 11696  df-uz 11889  df-q 11992  df-rp 12036  df-xneg 12151  df-xadd 12152  df-xmul 12153  df-icc 12387  df-fz 12534  df-seq 13009  df-exp 13068  df-cj 14047  df-re 14048  df-im 14049  df-sqrt 14183  df-abs 14184  df-struct 16066  df-ndx 16067  df-slot 16068  df-base 16070  df-plusg 16162  df-mulr 16163  df-starv 16164  df-tset 16168  df-ple 16169  df-ds 16172  df-unif 16173  df-rest 16291  df-topn 16292  df-topgen 16312  df-psmet 19953  df-xmet 19954  df-met 19955  df-bl 19956  df-mopn 19957  df-fbas 19958  df-fg 19959  df-cnfld 19962  df-top 20919  df-topon 20936  df-topsp 20958  df-bases 20971  df-cld 21044  df-ntr 21045  df-cls 21046  df-nei 21123  df-lp 21161  df-perf 21162  df-cnp 21253  df-haus 21340  df-fil 21870  df-fm 21962  df-flim 21963  df-flf 21964  df-xms 22345  df-ms 22346  df-limc 23850  df-dv 23851
This theorem is referenced by:  dvmptid  23940  dvmptc  23941  taylthlem1  24347  taylthlem2  24348  pige3  24490  dvcxp1  24702  dvreasin  33830  dvreacos  33831  areacirclem1  33832
  Copyright terms: Public domain W3C validator