![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dvmptres2 | Structured version Visualization version GIF version |
Description: Function-builder for derivative: restrict a derivative to a subset. (Contributed by Mario Carneiro, 1-Sep-2014.) (Revised by Mario Carneiro, 11-Feb-2015.) |
Ref | Expression |
---|---|
dvmptadd.s | ⊢ (𝜑 → 𝑆 ∈ {ℝ, ℂ}) |
dvmptadd.a | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐴 ∈ ℂ) |
dvmptadd.b | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐵 ∈ 𝑉) |
dvmptadd.da | ⊢ (𝜑 → (𝑆 D (𝑥 ∈ 𝑋 ↦ 𝐴)) = (𝑥 ∈ 𝑋 ↦ 𝐵)) |
dvmptres2.z | ⊢ (𝜑 → 𝑍 ⊆ 𝑋) |
dvmptres2.j | ⊢ 𝐽 = (𝐾 ↾t 𝑆) |
dvmptres2.k | ⊢ 𝐾 = (TopOpen‘ℂfld) |
dvmptres2.i | ⊢ (𝜑 → ((int‘𝐽)‘𝑍) = 𝑌) |
Ref | Expression |
---|---|
dvmptres2 | ⊢ (𝜑 → (𝑆 D (𝑥 ∈ 𝑍 ↦ 𝐴)) = (𝑥 ∈ 𝑌 ↦ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dvmptadd.s | . . . 4 ⊢ (𝜑 → 𝑆 ∈ {ℝ, ℂ}) | |
2 | recnprss 23888 | . . . 4 ⊢ (𝑆 ∈ {ℝ, ℂ} → 𝑆 ⊆ ℂ) | |
3 | 1, 2 | syl 17 | . . 3 ⊢ (𝜑 → 𝑆 ⊆ ℂ) |
4 | dvmptadd.a | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐴 ∈ ℂ) | |
5 | 4 | fmpttd 6530 | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ 𝐴):𝑋⟶ℂ) |
6 | dvmptadd.da | . . . . . 6 ⊢ (𝜑 → (𝑆 D (𝑥 ∈ 𝑋 ↦ 𝐴)) = (𝑥 ∈ 𝑋 ↦ 𝐵)) | |
7 | 6 | dmeqd 5463 | . . . . 5 ⊢ (𝜑 → dom (𝑆 D (𝑥 ∈ 𝑋 ↦ 𝐴)) = dom (𝑥 ∈ 𝑋 ↦ 𝐵)) |
8 | dvmptadd.b | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐵 ∈ 𝑉) | |
9 | 8 | ralrimiva 3115 | . . . . . 6 ⊢ (𝜑 → ∀𝑥 ∈ 𝑋 𝐵 ∈ 𝑉) |
10 | dmmptg 5775 | . . . . . 6 ⊢ (∀𝑥 ∈ 𝑋 𝐵 ∈ 𝑉 → dom (𝑥 ∈ 𝑋 ↦ 𝐵) = 𝑋) | |
11 | 9, 10 | syl 17 | . . . . 5 ⊢ (𝜑 → dom (𝑥 ∈ 𝑋 ↦ 𝐵) = 𝑋) |
12 | 7, 11 | eqtrd 2805 | . . . 4 ⊢ (𝜑 → dom (𝑆 D (𝑥 ∈ 𝑋 ↦ 𝐴)) = 𝑋) |
13 | dvbsss 23886 | . . . 4 ⊢ dom (𝑆 D (𝑥 ∈ 𝑋 ↦ 𝐴)) ⊆ 𝑆 | |
14 | 12, 13 | syl6eqssr 3805 | . . 3 ⊢ (𝜑 → 𝑋 ⊆ 𝑆) |
15 | dvmptres2.z | . . . 4 ⊢ (𝜑 → 𝑍 ⊆ 𝑋) | |
16 | 15, 14 | sstrd 3762 | . . 3 ⊢ (𝜑 → 𝑍 ⊆ 𝑆) |
17 | dvmptres2.k | . . . 4 ⊢ 𝐾 = (TopOpen‘ℂfld) | |
18 | dvmptres2.j | . . . 4 ⊢ 𝐽 = (𝐾 ↾t 𝑆) | |
19 | 17, 18 | dvres 23895 | . . 3 ⊢ (((𝑆 ⊆ ℂ ∧ (𝑥 ∈ 𝑋 ↦ 𝐴):𝑋⟶ℂ) ∧ (𝑋 ⊆ 𝑆 ∧ 𝑍 ⊆ 𝑆)) → (𝑆 D ((𝑥 ∈ 𝑋 ↦ 𝐴) ↾ 𝑍)) = ((𝑆 D (𝑥 ∈ 𝑋 ↦ 𝐴)) ↾ ((int‘𝐽)‘𝑍))) |
20 | 3, 5, 14, 16, 19 | syl22anc 1477 | . 2 ⊢ (𝜑 → (𝑆 D ((𝑥 ∈ 𝑋 ↦ 𝐴) ↾ 𝑍)) = ((𝑆 D (𝑥 ∈ 𝑋 ↦ 𝐴)) ↾ ((int‘𝐽)‘𝑍))) |
21 | 15 | resmptd 5592 | . . 3 ⊢ (𝜑 → ((𝑥 ∈ 𝑋 ↦ 𝐴) ↾ 𝑍) = (𝑥 ∈ 𝑍 ↦ 𝐴)) |
22 | 21 | oveq2d 6812 | . 2 ⊢ (𝜑 → (𝑆 D ((𝑥 ∈ 𝑋 ↦ 𝐴) ↾ 𝑍)) = (𝑆 D (𝑥 ∈ 𝑍 ↦ 𝐴))) |
23 | 6 | reseq1d 5532 | . . 3 ⊢ (𝜑 → ((𝑆 D (𝑥 ∈ 𝑋 ↦ 𝐴)) ↾ ((int‘𝐽)‘𝑍)) = ((𝑥 ∈ 𝑋 ↦ 𝐵) ↾ ((int‘𝐽)‘𝑍))) |
24 | dvmptres2.i | . . . 4 ⊢ (𝜑 → ((int‘𝐽)‘𝑍) = 𝑌) | |
25 | 24 | reseq2d 5533 | . . 3 ⊢ (𝜑 → ((𝑥 ∈ 𝑋 ↦ 𝐵) ↾ ((int‘𝐽)‘𝑍)) = ((𝑥 ∈ 𝑋 ↦ 𝐵) ↾ 𝑌)) |
26 | 17 | cnfldtopon 22806 | . . . . . . . . . 10 ⊢ 𝐾 ∈ (TopOn‘ℂ) |
27 | resttopon 21186 | . . . . . . . . . 10 ⊢ ((𝐾 ∈ (TopOn‘ℂ) ∧ 𝑆 ⊆ ℂ) → (𝐾 ↾t 𝑆) ∈ (TopOn‘𝑆)) | |
28 | 26, 3, 27 | sylancr 575 | . . . . . . . . 9 ⊢ (𝜑 → (𝐾 ↾t 𝑆) ∈ (TopOn‘𝑆)) |
29 | 18, 28 | syl5eqel 2854 | . . . . . . . 8 ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑆)) |
30 | topontop 20938 | . . . . . . . 8 ⊢ (𝐽 ∈ (TopOn‘𝑆) → 𝐽 ∈ Top) | |
31 | 29, 30 | syl 17 | . . . . . . 7 ⊢ (𝜑 → 𝐽 ∈ Top) |
32 | toponuni 20939 | . . . . . . . . 9 ⊢ (𝐽 ∈ (TopOn‘𝑆) → 𝑆 = ∪ 𝐽) | |
33 | 29, 32 | syl 17 | . . . . . . . 8 ⊢ (𝜑 → 𝑆 = ∪ 𝐽) |
34 | 16, 33 | sseqtrd 3790 | . . . . . . 7 ⊢ (𝜑 → 𝑍 ⊆ ∪ 𝐽) |
35 | eqid 2771 | . . . . . . . 8 ⊢ ∪ 𝐽 = ∪ 𝐽 | |
36 | 35 | ntrss2 21082 | . . . . . . 7 ⊢ ((𝐽 ∈ Top ∧ 𝑍 ⊆ ∪ 𝐽) → ((int‘𝐽)‘𝑍) ⊆ 𝑍) |
37 | 31, 34, 36 | syl2anc 573 | . . . . . 6 ⊢ (𝜑 → ((int‘𝐽)‘𝑍) ⊆ 𝑍) |
38 | 24, 37 | eqsstr3d 3789 | . . . . 5 ⊢ (𝜑 → 𝑌 ⊆ 𝑍) |
39 | 38, 15 | sstrd 3762 | . . . 4 ⊢ (𝜑 → 𝑌 ⊆ 𝑋) |
40 | 39 | resmptd 5592 | . . 3 ⊢ (𝜑 → ((𝑥 ∈ 𝑋 ↦ 𝐵) ↾ 𝑌) = (𝑥 ∈ 𝑌 ↦ 𝐵)) |
41 | 23, 25, 40 | 3eqtrd 2809 | . 2 ⊢ (𝜑 → ((𝑆 D (𝑥 ∈ 𝑋 ↦ 𝐴)) ↾ ((int‘𝐽)‘𝑍)) = (𝑥 ∈ 𝑌 ↦ 𝐵)) |
42 | 20, 22, 41 | 3eqtr3d 2813 | 1 ⊢ (𝜑 → (𝑆 D (𝑥 ∈ 𝑍 ↦ 𝐴)) = (𝑥 ∈ 𝑌 ↦ 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 382 = wceq 1631 ∈ wcel 2145 ∀wral 3061 ⊆ wss 3723 {cpr 4319 ∪ cuni 4575 ↦ cmpt 4864 dom cdm 5250 ↾ cres 5252 ⟶wf 6026 ‘cfv 6030 (class class class)co 6796 ℂcc 10140 ℝcr 10141 ↾t crest 16289 TopOpenctopn 16290 ℂfldccnfld 19961 Topctop 20918 TopOnctopon 20935 intcnt 21042 D cdv 23847 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 ax-5 1991 ax-6 2057 ax-7 2093 ax-8 2147 ax-9 2154 ax-10 2174 ax-11 2190 ax-12 2203 ax-13 2408 ax-ext 2751 ax-rep 4905 ax-sep 4916 ax-nul 4924 ax-pow 4975 ax-pr 5035 ax-un 7100 ax-cnex 10198 ax-resscn 10199 ax-1cn 10200 ax-icn 10201 ax-addcl 10202 ax-addrcl 10203 ax-mulcl 10204 ax-mulrcl 10205 ax-mulcom 10206 ax-addass 10207 ax-mulass 10208 ax-distr 10209 ax-i2m1 10210 ax-1ne0 10211 ax-1rid 10212 ax-rnegex 10213 ax-rrecex 10214 ax-cnre 10215 ax-pre-lttri 10216 ax-pre-lttrn 10217 ax-pre-ltadd 10218 ax-pre-mulgt0 10219 ax-pre-sup 10220 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 837 df-3or 1072 df-3an 1073 df-tru 1634 df-ex 1853 df-nf 1858 df-sb 2050 df-eu 2622 df-mo 2623 df-clab 2758 df-cleq 2764 df-clel 2767 df-nfc 2902 df-ne 2944 df-nel 3047 df-ral 3066 df-rex 3067 df-reu 3068 df-rmo 3069 df-rab 3070 df-v 3353 df-sbc 3588 df-csb 3683 df-dif 3726 df-un 3728 df-in 3730 df-ss 3737 df-pss 3739 df-nul 4064 df-if 4227 df-pw 4300 df-sn 4318 df-pr 4320 df-tp 4322 df-op 4324 df-uni 4576 df-int 4613 df-iun 4657 df-iin 4658 df-br 4788 df-opab 4848 df-mpt 4865 df-tr 4888 df-id 5158 df-eprel 5163 df-po 5171 df-so 5172 df-fr 5209 df-we 5211 df-xp 5256 df-rel 5257 df-cnv 5258 df-co 5259 df-dm 5260 df-rn 5261 df-res 5262 df-ima 5263 df-pred 5822 df-ord 5868 df-on 5869 df-lim 5870 df-suc 5871 df-iota 5993 df-fun 6032 df-fn 6033 df-f 6034 df-f1 6035 df-fo 6036 df-f1o 6037 df-fv 6038 df-riota 6757 df-ov 6799 df-oprab 6800 df-mpt2 6801 df-om 7217 df-1st 7319 df-2nd 7320 df-wrecs 7563 df-recs 7625 df-rdg 7663 df-1o 7717 df-oadd 7721 df-er 7900 df-map 8015 df-pm 8016 df-en 8114 df-dom 8115 df-sdom 8116 df-fin 8117 df-fi 8477 df-sup 8508 df-inf 8509 df-pnf 10282 df-mnf 10283 df-xr 10284 df-ltxr 10285 df-le 10286 df-sub 10474 df-neg 10475 df-div 10891 df-nn 11227 df-2 11285 df-3 11286 df-4 11287 df-5 11288 df-6 11289 df-7 11290 df-8 11291 df-9 11292 df-n0 11500 df-z 11585 df-dec 11701 df-uz 11894 df-q 11997 df-rp 12036 df-xneg 12151 df-xadd 12152 df-xmul 12153 df-fz 12534 df-seq 13009 df-exp 13068 df-cj 14047 df-re 14048 df-im 14049 df-sqrt 14183 df-abs 14184 df-struct 16066 df-ndx 16067 df-slot 16068 df-base 16070 df-plusg 16162 df-mulr 16163 df-starv 16164 df-tset 16168 df-ple 16169 df-ds 16172 df-unif 16173 df-rest 16291 df-topn 16292 df-topgen 16312 df-psmet 19953 df-xmet 19954 df-met 19955 df-bl 19956 df-mopn 19957 df-cnfld 19962 df-top 20919 df-topon 20936 df-topsp 20958 df-bases 20971 df-cld 21044 df-ntr 21045 df-cls 21046 df-cnp 21253 df-xms 22345 df-ms 22346 df-limc 23850 df-dv 23851 |
This theorem is referenced by: dvmptres 23946 dvmptcmul 23947 rolle 23973 mvth 23975 taylthlem1 24347 pige3 24490 logccv 24630 lgamgulmlem2 24977 itgpowd 38326 lhe4.4ex1a 39054 binomcxplemdvbinom 39078 binomcxplemnotnn0 39081 itgsinexplem1 40684 dirkeritg 40833 fourierdlem39 40877 etransclem46 41011 |
Copyright terms: Public domain | W3C validator |