MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvmptres Structured version   Visualization version   GIF version

Theorem dvmptres 23946
Description: Function-builder for derivative: restrict a derivative to an open subset. (Contributed by Mario Carneiro, 1-Sep-2014.) (Revised by Mario Carneiro, 11-Feb-2015.)
Hypotheses
Ref Expression
dvmptadd.s (𝜑𝑆 ∈ {ℝ, ℂ})
dvmptadd.a ((𝜑𝑥𝑋) → 𝐴 ∈ ℂ)
dvmptadd.b ((𝜑𝑥𝑋) → 𝐵𝑉)
dvmptadd.da (𝜑 → (𝑆 D (𝑥𝑋𝐴)) = (𝑥𝑋𝐵))
dvmptres.y (𝜑𝑌𝑋)
dvmptres.j 𝐽 = (𝐾t 𝑆)
dvmptres.k 𝐾 = (TopOpen‘ℂfld)
dvmptres.t (𝜑𝑌𝐽)
Assertion
Ref Expression
dvmptres (𝜑 → (𝑆 D (𝑥𝑌𝐴)) = (𝑥𝑌𝐵))
Distinct variable groups:   𝜑,𝑥   𝑥,𝑆   𝑥,𝑉   𝑥,𝑋   𝑥,𝑌
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑥)   𝐽(𝑥)   𝐾(𝑥)

Proof of Theorem dvmptres
StepHypRef Expression
1 dvmptadd.s . 2 (𝜑𝑆 ∈ {ℝ, ℂ})
2 dvmptadd.a . 2 ((𝜑𝑥𝑋) → 𝐴 ∈ ℂ)
3 dvmptadd.b . 2 ((𝜑𝑥𝑋) → 𝐵𝑉)
4 dvmptadd.da . 2 (𝜑 → (𝑆 D (𝑥𝑋𝐴)) = (𝑥𝑋𝐵))
5 dvmptres.y . 2 (𝜑𝑌𝑋)
6 dvmptres.j . 2 𝐽 = (𝐾t 𝑆)
7 dvmptres.k . 2 𝐾 = (TopOpen‘ℂfld)
87cnfldtop 22809 . . . . 5 𝐾 ∈ Top
9 resttop 21187 . . . . 5 ((𝐾 ∈ Top ∧ 𝑆 ∈ {ℝ, ℂ}) → (𝐾t 𝑆) ∈ Top)
108, 1, 9sylancr 698 . . . 4 (𝜑 → (𝐾t 𝑆) ∈ Top)
116, 10syl5eqel 2844 . . 3 (𝜑𝐽 ∈ Top)
12 dvmptres.t . . 3 (𝜑𝑌𝐽)
13 isopn3i 21109 . . 3 ((𝐽 ∈ Top ∧ 𝑌𝐽) → ((int‘𝐽)‘𝑌) = 𝑌)
1411, 12, 13syl2anc 696 . 2 (𝜑 → ((int‘𝐽)‘𝑌) = 𝑌)
151, 2, 3, 4, 5, 6, 7, 14dvmptres2 23945 1 (𝜑 → (𝑆 D (𝑥𝑌𝐴)) = (𝑥𝑌𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383   = wceq 1632  wcel 2140  wss 3716  {cpr 4324  cmpt 4882  cfv 6050  (class class class)co 6815  cc 10147  cr 10148  t crest 16304  TopOpenctopn 16305  fldccnfld 19969  Topctop 20921  intcnt 21044   D cdv 23847
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1989  ax-6 2055  ax-7 2091  ax-8 2142  ax-9 2149  ax-10 2169  ax-11 2184  ax-12 2197  ax-13 2392  ax-ext 2741  ax-rep 4924  ax-sep 4934  ax-nul 4942  ax-pow 4993  ax-pr 5056  ax-un 7116  ax-cnex 10205  ax-resscn 10206  ax-1cn 10207  ax-icn 10208  ax-addcl 10209  ax-addrcl 10210  ax-mulcl 10211  ax-mulrcl 10212  ax-mulcom 10213  ax-addass 10214  ax-mulass 10215  ax-distr 10216  ax-i2m1 10217  ax-1ne0 10218  ax-1rid 10219  ax-rnegex 10220  ax-rrecex 10221  ax-cnre 10222  ax-pre-lttri 10223  ax-pre-lttrn 10224  ax-pre-ltadd 10225  ax-pre-mulgt0 10226  ax-pre-sup 10227
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2048  df-eu 2612  df-mo 2613  df-clab 2748  df-cleq 2754  df-clel 2757  df-nfc 2892  df-ne 2934  df-nel 3037  df-ral 3056  df-rex 3057  df-reu 3058  df-rmo 3059  df-rab 3060  df-v 3343  df-sbc 3578  df-csb 3676  df-dif 3719  df-un 3721  df-in 3723  df-ss 3730  df-pss 3732  df-nul 4060  df-if 4232  df-pw 4305  df-sn 4323  df-pr 4325  df-tp 4327  df-op 4329  df-uni 4590  df-int 4629  df-iun 4675  df-iin 4676  df-br 4806  df-opab 4866  df-mpt 4883  df-tr 4906  df-id 5175  df-eprel 5180  df-po 5188  df-so 5189  df-fr 5226  df-we 5228  df-xp 5273  df-rel 5274  df-cnv 5275  df-co 5276  df-dm 5277  df-rn 5278  df-res 5279  df-ima 5280  df-pred 5842  df-ord 5888  df-on 5889  df-lim 5890  df-suc 5891  df-iota 6013  df-fun 6052  df-fn 6053  df-f 6054  df-f1 6055  df-fo 6056  df-f1o 6057  df-fv 6058  df-riota 6776  df-ov 6818  df-oprab 6819  df-mpt2 6820  df-om 7233  df-1st 7335  df-2nd 7336  df-wrecs 7578  df-recs 7639  df-rdg 7677  df-1o 7731  df-oadd 7735  df-er 7914  df-map 8028  df-pm 8029  df-en 8125  df-dom 8126  df-sdom 8127  df-fin 8128  df-fi 8485  df-sup 8516  df-inf 8517  df-pnf 10289  df-mnf 10290  df-xr 10291  df-ltxr 10292  df-le 10293  df-sub 10481  df-neg 10482  df-div 10898  df-nn 11234  df-2 11292  df-3 11293  df-4 11294  df-5 11295  df-6 11296  df-7 11297  df-8 11298  df-9 11299  df-n0 11506  df-z 11591  df-dec 11707  df-uz 11901  df-q 12003  df-rp 12047  df-xneg 12160  df-xadd 12161  df-xmul 12162  df-fz 12541  df-seq 13017  df-exp 13076  df-cj 14059  df-re 14060  df-im 14061  df-sqrt 14195  df-abs 14196  df-struct 16082  df-ndx 16083  df-slot 16084  df-base 16086  df-plusg 16177  df-mulr 16178  df-starv 16179  df-tset 16183  df-ple 16184  df-ds 16187  df-unif 16188  df-rest 16306  df-topn 16307  df-topgen 16327  df-psmet 19961  df-xmet 19962  df-met 19963  df-bl 19964  df-mopn 19965  df-cnfld 19970  df-top 20922  df-topon 20939  df-topsp 20960  df-bases 20973  df-cld 21046  df-ntr 21047  df-cls 21048  df-cnp 21255  df-xms 22347  df-ms 22348  df-limc 23850  df-dv 23851
This theorem is referenced by:  dvmptfsum  23958  dvexp3  23961  dvlipcn  23977  dvivthlem1  23991  lhop2  23998  dvfsumle  24004  dvfsumabs  24006  dvfsumlem2  24010  taylthlem2  24348  pserdvlem2  24402  advlog  24621  advlogexp  24622  logtayl  24627  loglesqrt  24720  dvatan  24883  log2sumbnd  25454  dvtan  33792  dvasin  33828  dvacos  33829  areacirclem1  33832  dvmptconst  40651  dvmptidg  40653  itgsin0pilem1  40687  itgsbtaddcnst  40720  fourierdlem56  40901  fourierdlem60  40905  fourierdlem61  40906  fourierdlem62  40907
  Copyright terms: Public domain W3C validator